Show simple item record

dc.contributor.authorHussein, Lao
dc.contributor.authorKivunge, Benard
dc.contributor.authorMuthoka, Geoffrey
dc.contributor.authorMwangi, Patrick
dc.date.accessioned2024-06-06T10:03:27Z
dc.date.available2024-06-06T10:03:27Z
dc.date.issued2015-05
dc.identifier.urihttp://repository.embuni.ac.ke/handle/embuni/4346
dc.descriptionArticleen_US
dc.description.abstractIn this paper we seek the number of irreducible polynomials of xn− 1 over GF(17). We factorize Xn− 1 over GF(17)into irreducible polynomials using cyclotomic cosets of 17 modulo n . The number of irreducible polynomials factors of Xn− 1 over fq is equal to the number of q cyclotomic cosets of modulo n. Each monic divisor of Xn− 1 is a generator polynomial of cyclic code in Fqn. We show that the number of cyclic codes of length n over a finite field f is equal to Xn− 1. Lastly, the number of cyclic codes of length n , when n= 17 , = the number of polynomials that divide 17k ,n = 17k,n=17k − 1, ( , 17) = 1 are enumerated.en_US
dc.language.isoenen_US
dc.publisherUoEmen_US
dc.relation.ispartofseriesVol. 2 No. 5;
dc.subjectirreducibleen_US
dc.subjectpolynomialsen_US
dc.titleEnumeration of cyclic codes over GF(17)en_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record