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ABSTRACT 

Several pest management programs have been developed to control the rising agricultural 

pest populations. However, the challenge of rapid evolution and pest resistance towards 

the control measures continues to cause high production losses to maize farmers in Africa. 

Few models have attempted to address the issue of Fall Armyworm (FAW) but have not 

incorporated the effect of insecticides resistance. The knowledge on the effect of 

insecticides resistance is still scanty. Models with resistance would help predict the 

dynamics of FAW population thus mitigate loses. The main objectives of this work were 

to develop, analyse, and numerically simulate a susceptible- infected deterministic 

mathematical model expressing the FAW-maize interaction and population dynamics 

under insecticidal sprays and resistance FAW larvae. Three model steady states are 

established and their local stability conducted using either the eigenvalue or the Routh- 

Hurwitz stability criterions and the global stability analyzed using Castillo Chavez, Perron 

eigen vector, and the Lyapunov methods. An expression for the Basic reproduction 

number, 𝑅0, and the sensitivity analysis of its parameter values is provided. Numerical 

analysis is conducted to various model parameter values. The results established all the 

model steady states to be locally and globally asymptotically stable at 𝑅0 ≤ 1. Also, 

resistance 𝜔 increased the infection rates by increasing the FAW larvae survival rate 𝜆 

and reducing the insecticidal efficacy 𝛿𝑅 and 𝛿𝑁. This work informs the agriculture sector 

and policy makers on pest control with the best ways to use insecticides to minimize pest 

resistance and enhance efficacy in production. Pest control measures should be modified 

to lower the FAW survival rate and all model parameters contributing to resistance 

formation by FAW larvae in order to minimize FAW- host interaction thus reducing crop 

damage.  
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CHAPTER ONE 

INTRODUCTION 

1.1 Background information 

Fall Armyworm (FAW), scientifically known as Spodoptera frugiperda, is an agricultural 

pest species of the order lepidoptera, a larval stage for the fall armyworm moth (Alvarenga 

et al., 2017). It is a polyphagous, sporadic pest that has continuously caused crop 

destruction and yield losses to both organic and inorganic farmers globally (Rosent rat er 

et al., 2016). Maize (corn) is considered a staple food and a source of food security to most 

African countries; however, farmers continue to face the threat of significant production 

losses due to climate change, pest and diseases (Haftay Gebreyesus Gebreziher, 2020). 

Recent research studies show that maize is the most preferred host plant of FAW 

(Westbrook et al., 2016). Various integrated control mechanisms for both organic and 

inorganic maize farming have been put in place to control the pest-host (FAW-maize) 

interactions but natural selection and mutation have caused FAW resistance towards the 

set control mechanisms (Russo et al., 2021). 

Research studies show that when a FAW invasion in a maize plantation is improperly 

managed, it results to a significant reduction in quality and quantity of the harvest (Gichere 

et al., 2022). In Africa, FAW was first reported in 2016 with the conducive weather 

conditions and the availability of FAW preferred host favoring rapid FAW reproduction. 

This makes FAW the most dominant and endemic pest in Africa and thus a great threat to 

production and food security (Osae et al., 2022). Synthetic insecticides are the main 

control methods adopted globally against FAW pest invasions especially Africa where 

governments are spending huge funds buying and distributing insecticides to their farmers 

(Assefa & Ayalew, 2019). However, continuous use of the insecticides increases the 

chances of pest resistance against the control method and thus high production cost. 

With maize being a staple food in Kenya and also a FAWs most preferred host plants 

Gichere et al., (2022), the negative impacts of FAW on maize production significantly 

affects Kenya’s big four Agenda of achieving 100% national nutrition and food security 
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and the entire Africans economic developments (Day et al., 2017). The poor-quality maize 

yields negatively affect the country’s GDP due to poor market access (De Groote et al., 

2020). Managing FAW populations is also expensive to most undeveloped African 

countries. Generally, FAW invasion to the agricultural sector in Africa poses a great threat 

towards the achievement of the CAADP Malabo declaration of halving poverty by 2025 

and the achievements of the 2030 Sustainable Development Goals (SDGs) of improving 

food security, eradicating poverty, and achieving sustainable production and consumption 

plans (Osae et al., 2022), (De Groote et al., 2020). 

Predicting the dynamics of a pest population and evaluating the existing pest control 

measures could significantly reduce the number and the cost of pest management thus 

improving on crop production, food security, and sustainability (Daudi et al., 2022). There 

is an increased need to study FAW- maize interaction and the application of insecticides 

with the evolution of resistance to develop better control methods that are more efficient, 

effective, and economical (De Groote et al., 2020), (Lee et al., 2020). Mathematical 

modeling offers an avenue to explore such important factors in agricultural production 

(Lewis et al., 2016). For instance, crop growth models issue physiological approaches for 

the simulations of pest destructions and crop interactions (Chander & Arya, 2016). 

Disease infection rate on the maize population could be decreased through control 

intervention measures such as chemical insecticides aimed at reducing the susceptible-

infected maize contacts rates, (Alemneh et al., 2019). In the present work we will consider 

chemical insecticides as the major control method against FAW. However, resistance 

allele and migration rate significantly influences FAW population dynamics (Garcia et al., 

2019). Ordinary differential equations (ODEs) have been used in developing and 

analyzing a stage structured FAW- maize interaction models (Daudi et al., 2022), (Daudi 

et al., 2021). However, limited attention has been shown to host- pest interaction models 

particularly in insect pest management measures (Ochwach et al., 2021). Thus, we apply 

ODEs and the concept of host- pest interaction models to study FAW larvae population 

dynamics in maize populations.  

Various deterministic mathematical models describing the dynamics of agricultural pest 

population under various pest control measures have been developed (Dhahbi et al., 2020), 
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(Affi, 2018), (Okhuese & Oduwole, 2020) ,(Chávez et al., 2017). Moreover, mathematical 

models evaluating the effects of pest and insecticides on crop production have been 

developed (Daudi et al., 2022), (Misra et al., 2021). However, despite the many pest 

control models in agricultural production comprehensive parametric research are limited. 

Through natural selection and mutation, a proportion of FAW pest is considered to express 

resistance traits against the insecticides thus increasing the host- pest interactions and 

reducing the insecticides efficacy (Russo et al., 2021) . 

To address this gap, this study develops a Susceptible-Infected (SI) compartmental model 

for two interacting populations; FAW – maize population, assessing the effects of 

insecticides sprays and resistance factor on the interaction patterns and the population 

dynamics. SI models are used to model the rate and transmission dynamics of infectious 

human or plant diseases (Wang, 2022), (Cheneke, Rao, & Edessa, 2022). This study 

assumes that the FAW larvae depend largely on the maize population for food and survival 

and considers insecticides which are most commonly used control method against FAW. 

This research study will increase the understanding of the fall armyworm-maize 

interaction patterns, and the best control measures to employ when the FAW species is in 

its larval stage while minimizing the larvae resistance formation. This will significantly 

improve on crop production enhancing food security and economic development (Sachs, 

2012).  

1.2 Statement of the problem 

Fall Armyworm has annually been reported to cause significant reduction in quality and 

quantity of harvest in agriculture. Several control measures against Fall Armyworm pest 

including the (Integrated Pest Management) IPM strategies have been employed but none 

is fully effective. Despite the global insecticides use in controlling the pest population, 

concerns over the development of resistance against the insecticides have increased over 

the recent years (Guo et al., 2020). These increases the need to study FAW- host 

interaction and the insecticides application with evolution of resistance to develop better 

control methods that are more effective and economical. Mathematical modeling offers 

an avenue to explore such important factors in agricultural production sector. However 

limited mathematical models on FAW- Maize interaction with pesticides and resistance 
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factor have been developed so far to aid on improving the existing resistance management 

strategies. Thus, our study will develop a mathematical model describing FAW larvae 

interaction with maize growing up to the reproductive stage and the effects of insecticides 

sprays and resistance on FAW interaction with its host plant i.e., maize. This will help 

better understand the FAW resistance and thus guide farmers and government IPM 

strategies in better control and management of FAW in maize production. 

1.3 Research questions 

1. How much does insecticides and resistance factors affect the maize-FAW larvae 

interactions patterns at any time t? 

2. What are the results of mathematically analyzing the FAW-Maize interaction 

model with a comparison between the normal and insecticides resistance larvae? 

3. What are the impacts of varying some model parameters to the interactions 

between the FAW larvae and Maize populations? 

1.4 Objectives 

The general and specific objectives for the study are provided below. 

1.4.1 General objectives 

To develop, analyze, and simulate a mathematical model of host-pest interaction under 

insecticides and resistance factor. A case study of fall armyworm – maize interaction. 

1.4.2 Specific objectives 

The specific objectives of the study are to; 

1. Develop a mathematical model of Fall Armyworm-maize interactions with normal 

and insecticides resistance larvae in two maize sections; with and without 

insecticides sprays. 

2. Conduct mathematical analysis of the model. 
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3. Perform numerical simulation to determine the impact of insecticides resistance 

on FAW-host interaction. 

1.5 Justification of the study 

Maize also called corn, is cultivated throughout the world with the United States, China 

and Brazil being among the top producing countries (Onu et al., 2019). About one-third 

of the world’s population depend on maize as a daily staple food. Maize is popular due to 

its multiple functionalities as a source of food for both human and animals (Kurt et al., 

2016). It is also used in industrial production of oil, alcohol, ethanol etc. Thus, maize is 

considered as an important crop economically in most parts of the world including Africa 

where it is a staple food. However, the crop continues to face the problem of pests and 

diseases which significantly lowers the quality and quantity of harvest. An example in 

Kenya, attack by stem borers an example FAW larvae and other insect’s pests is 

considered the main shortcoming on maize production. Despite the global pesticides use 

in controlling the pest population, concerns over the development of resistance against the 

pesticides have increased over the recent years (Guo et al., 2020). 

No single pest resistant management strategy can meet all the requirements for managing 

FAW resistance, thus there is increased importance in analyzing and evaluating the factors 

under its management scenarios (Alphey & Bonsall, 2018). Mathematical modeling and 

computer simulations have been used to analyse resistance evolution and to evaluate 

potential resistance management strategies (Stratonovitch et al., 2014a). This will improve 

on maize production enhancing food security in line with the Sustainable Development 

Goals (SDGs) of improving food security, eradicating poverty and achieving sustainable 

production and consumption plans (Assembly, G. 2015). 

1.6 Scope of the study 

The study develops an epidemiological model on fall armyworm (Spodoptera frugiperda) 

interaction with maize under insecticides and resistance factor. We consider maize 

population growing at any time t interacting with fall armyworm larvae expressing normal 

and resistance traits. Although many control measures against FAW exist we only 
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consider insecticides control method. The FAW population is assumed to reproduce very 

fast due to its short life cycle while the plant population remains constant. We use 

secondary data for the variables and parameters from literature to validate the model. 

1.7 Significance of the study 

In this study, we review the insecticides spray as a control measure of Fall Armyworm 

larvae with some FAW larvae expressing the resistance trait against the insecticides. We 

develop a deterministic model of FAW larvae interacting with maize growing to 

reproduction and the impacts of insecticides and resistance factors to interaction patterns. 

This study will be very useful in improving the agricultural Resistance Management 

Strategies (RMS) and Integrated Pest Management (IPM) strategies. It will be applied in 

managing FAW population in maize fields thereby increasing on maize yields quantity 

and quality. This will further improve on food security in line with the Sustainable 

Development Goals (SDGs) of improving food security, eradicating poverty and 

achieving sustainable production and consumption plans (Assembly, G. 2015). 
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CHAPTER TWO 

REVIEW OF LITERATURE 

2.1 The Fall armyworm 

According to a study conducted by Assefa and Ayalew, (2019), the length of FAW life 

cycle depends on the season. It is observed to take between 30 days in summer to 90 days 

in winter. The FAW egg stage take a duration of two to three days during summer season. 

The female FAW lay eggs in large masses of about 100 to 200 and has an ability to lay up 

to 1500 eggs in a lifetime. The eggs hatch into the larvae stage which is divided into six 

instars. The larval stage takes between 14 days during summer to 30 days during winter 

Chhetri, (2019). The larvae stage interacts with the maize plants by consuming the leaves, 

ribs, and the stalks leaving the plant with a torn appearance. Larvae also attack the plant 

by destroying the bud, whorl, and the ear. The pupa stage for the FAW takes place in the 

soil which later develops into an adult FAW. FAW is described as a highly destructive 

agricultural pest with high reproduction rate and a short life span. However, limited 

solutions towards sustainable FAW management in Africa and Asia exists till date. Thus, 

increased need for a science based, inclusive and well balanced IPM strategies (B. M. 

Prasanna, 2017). 

A study by Day et al. (2017), reviewed a variety of research works on the introduction, 

distribution and management of FAW in Africa. FAW considered native to the tropics of 

America has in the recent years invaded Africa causing significant maize and crop damage 

of approximated 25% to 70% loss. Various control methods have been adopted towards 

large scale eradication of FAW including use of chemical and cultural control measures 

with minimal success. In near future gathering and analyzing experience would help in 

designing and testing a suitable control method for the FAW pest. 

A research study conducted by B. Prasanna et al. (2018), shows that it is very essential to 

understand the FAW biology before taking any control measure. This helps improve on 

scientific investigations and achieve immediate solution. FAW has been observed to 

possess characteristic factors different from other agricultural pests commonly dealt with 



8 
 

before. Some of them being its polyphagous nature, its high spreading and migratory trait 

and its ability to survive throughout all seasons. 

Abdirahman Yonis (2019), conducted a study evaluating the impacts of FAW on maize 

production, its economic impact on the yields, and the control measures of FAW in Afoi 

district. The results of the studies showed that 89% of their interviewers agreed to the 

negative impact of FAW on maize production and over 90 percent agreed to FAW 

reducing quality and quantity of harvested yield. FAW was reported to be a destructive 

pest causing significant food damage and need to be controlled effectively. 

Several fields evolved resistant fall armyworm populations have been recorded globally, 

they include those showing resistance to variety of chemical pesticides and genetically 

modified Bt crops, (Chandrasena et al., 2018); (Gutiérrez‐Moreno et al., 2019). The study 

represents a valuable advance toward improving management strategies for fall 

armyworm. 

According to Jin et al. (2018), crops genetically engineered to produce insecticidal 

proteins from the bacterium Bacillus thuringiensis (Bt) kill some major pests and reduce 

use of insecticide sprays. However, evolution of pest resistance to Bt proteins decreases 

these benefits. Better understanding of the genetic basis of resistance to Bt crops is 

urgently needed to address this problem. Clarifying the development of pesticide and Bt 

resistance in fall armyworm would be very beneficial in providing scientific support in 

the acceptance and use of Bt biopesticides. The FAW is known for building-up resistance 

to insecticides very quickly. 

Morales et al. (2021), evaluated different aspects of resistance of cultivators cropped by 

farmers in Kenya to FAW larvae feeding under laboratory and field conditions. Feeding 

of FAW neonate larvae in no choice and choice experiments, development of larvae/pupae 

food assimilation under laboratory condition and plant damage in a field experiment was 

conducted. Results showed that there are differences between cultivators but high levels 

of resistance to larvae feeding was not found. 
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2.2 Mathematical models of FAW-host interaction, impacts on production and 

resistance factor. 

According to Muthuri (2009), scientist have made positive progress through modelling 

which has helped in new scientific advancements and disease conquest thus improving the 

human living standards today. But despite various success achieved through modelling, 

scientists still find new research gaps the models fail to explain or correctly predict.  

Modelling is an important research tool ever developed to help solve daily challenges we 

face. Thus, it is important to revise and improve existing models as new information gets 

discovered. 

Luo et al. (2011), conducted a study modelling mutation and selection using basic 

mathematics with evolutionary modelling. According to the study evolution of resistance 

has caused significant scientific problems. This has resulted to increased research in 

evolutionary modelling. This research study introduced mathematical methods used to 

create dynamic models of evolution. They reviewed classical application of evolutionary 

modelling including methods to suppress evolution and used selection to optimize 

treatment. Dynamic modeling of evolutionary processes is an emerging field with 

important medical applications. 

Understanding how different farming practices and environmental factors interact with a 

pest population resulting to the spread of resistance is quite a challenging experiment at 

realistic spatial and temporal scales. Mathematical modelling and computer simulation 

have, therefore, been used to analyse resistance evolution and to evaluate potential 

resistance management tactic. The study used an individual based model to simulate the 

effects of farming practices on pest population dynamics and the impacts different control 

strategies have on resistance development rate. However, the model failed to incorporate 

a host-pest interaction in its control strategies and thus compare the resistance 

development rate (Stratonovitch et al., 2014b). 

Anggreini (2016), conducted a study examining the stability of differential equations of 

the mathematical model on host-parasitoids interactions. The research involved the 

application of mathematical models in the field of biology that examined the interaction 
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of the two populations, i.e., host populations and parasitoid populations. In the study the 

parasitoid population slowly kills the host population by living aboard and by taking food 

from the host population it occupies. Differential equations were used to construct a 

mathematical model particularly focused on the stability of the local mathematical model 

of interaction of two differential equations that is; host and parasitoid populations. The 

stability in the study was stable equilibrium points from the characteristic equations of 

host-parasitoid interactions. The study further determines the eigen values of the Jacobian 

matrix to indicate whether the stable equilibrium points was asymptotically stable or not. 

Slater et al. (2017), developed a model evaluating and extending advices towards pest 

resistance management and in understanding needs and opportunities offered by new 

control techniques. The research study observed and simulated levels of efficacy obtained 

with lambda-cyhalothrin(L) and pymetrozin (p) sprays as a function of time since 

application. According to the study, no single management strategy fully helps in 

managing resistance factor in pests. It’s of great importance to evaluate factors prevailing 

in adopted pest management strategies. However, the model had no pest- host interaction 

in its resistance management plan. Effectiveness of a mixture strategy declined with 

reduction in grower compliance. At least 50% compliance was needed to cause some delay 

in host resistance development. 

Although pesticides are considered as the major cause of evolution of insect pests, the 

evolutionary process that give rise to insecticides resistance remain poorly understood. 

Insecticide resistance is reported to increase with increase in insecticide use. The research 

study used 532 records of the arthropod pesticide resistance database covering 20 species 

and applied survival analysis to model the number of generations from insecticide use to 

first report of resistance. Arthropod species significantly varied in how rapidly they 

evolved resistance to new insecticides regardless of their chemistry. This study laid bases 

to understanding how insecticides resistance evolves, guiding on future management 

strategies and further resistance management research studies (Brevik et al., 2018). 

Garcia et al. (2019), developed a computational model to describe the dynamics of FAW 

by considering the crop dynamics, temperature changes and population genetics. The 

results were compared with insect monitoring data and well fitted in relation to population 
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dynamics. The model estimated the parameters associate with insect dynamics including, 

resistance-allele frequency (0.15), migration rate (0.48) and rate of larval movement 

(0.04). A posterior sensitivity analysis indicated that the frequency of the resistance allele 

most influenced the model, followed by the migration rate. The study model constituted 

important tools that could be used in designing IPM programs to manage FAW. It could 

also be applied in predicting the population dynamics of FAW in affected areas. This study 

however did not consider the insecticides-resistance factor in managing FAW population 

dynamics. 

Daudi et al. (2021), explored the dynamics and implication of FAW outbreak. The study 

proposed a new dynamical system for maize biomass and FAW interaction via Caputo 

fractional-order operator. A generic model with two sub models to assess the effect of 

FAW infestation on maize at the vegetative and reproductive stages was developed. 

Numerically the two sub models under two different cases were analyzed. The first case 

involved different numbers of adult FAW in the field at 𝑡 = 0 and the second case 

concerned the existence of factors that led to immigration of adult FAW at time (t). 

Finally, a simulation of the Caputo system using the Adam-Bashforth- Moulton method 

was conducted. The work was not exhaustive and future expectations for deploying 

optimal control of FAW to maximize yield and improve on quality and quantity of maize 

production was advised. 

A study by Daudi et al. (2022), presented a non-autonomous model with a Hollings type 

II functional response to study dynamics for FAW- maize interaction in a periodic 

environment. The model was analyzed by investigating positive invariance, boundedness, 

permanence, global stability and non-persistence. The model was then extended to cover 

time dependent controls. The study investigated the impact of reducing FAW egg and 

larvae population through traditional and chemical insecticides. Seasonal variation plays 

a significant role on all FAW stages. The modeling approach presented here provided a 

framework for designing effective control strategies to manage the fall armyworm during 

outbreaks. However, resistance factor was not discussed in the model. 
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2.3 Research gap 

Various deterministic mathematical models describing the dynamics of agricultural pest 

population under various pest control measures have been developed. Moreover, 

mathematical models evaluating the effects of pest and insecticides on crop production 

have also been developed. However, limited attention has been shown to host- pest 

interaction models particularly in insect pest management measures (Ochwach et al., 

2021). Thus, we apply ODEs and the concept of host- pest interaction models to study the 

interaction of FAW larvae population dynamics in maize populations. We also incorporate 

the effects of insecticides resistance by the FAW larvae on the host- pest interaction 

dynamics and on the maize population. 
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CHAPTER THREE 

MATERIALS AND METHODS 

3.0 Introduction  

In this chapter, we describe the methodology used in this research work which involves 

developing, analyzing and numerically simulating an epidemiological Fall armyworm- 

maize interaction model. We present the relationship between variables and model 

parameters using a system of autonomous nonlinear ordinary differential equations. We 

develop a deterministic epidemiological model of FAW-host interaction with six 

compartmental classes assuming the dynamics of FAW population approaching an 

equilibrium or steady state and the maize population at the two sections being constant. 

We analyze the model by calculating the basic reproduction number (R0) using the next 

generation matrix, carrying out both local and global stability analysis of the equilibria 

points using the eigenvalue and Lyapunov stability analysis theory and determine the 

disease-free equilibrium point (DFEP). We test the positivity and boundedness of the 

model. We then carry out model simulations. Simulations are conducted to analyse the 

effects of variables and parameter interactions in the model. 

3.1 Model Formulation 

In this section, we develop and evaluate the dynamics of a Susceptible-Infected (SI) 

compartmental model for two interacting populations; the maize population and the FAW 

population. In SI models, infection occurs when a susceptible individual comes into 

contact with an infected individual thus contracting the disease (Ega, 2022). In this study, 

maize population transits from the susceptible into infected compartmental class after 

making contact with either the resistant or the normal larvae which transmits the disease. 

The FAW larvae population has been divided into two compartmental classes, that is; the 

normal larvae  𝐿𝑁(𝑡 ) and the resistant larval population 𝐿𝑅(𝑡). A proportion of normal 

larvae progresses into resistance larvae at a constant rate 𝜔 after contact with the 

insecticides.  The natural recruitment rate contributing to the FAW larvae population is a 

constant rate 𝑒𝑁 through a survival rate 𝜆. 
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There are two maize sections; the organic (O) and the insecticidal maize sections (I). The 

organic section (O) is without any FAW control methods while the insecticidal section (I) 

is under insecticidal spraying. The natural recruitment rates of the maize population occur 

at a constant rate 𝜌. The two maize sections interact naturally with both the normal 

larvae 𝐿𝑁(𝑡) and the resistance larvae  𝐿𝑅(𝑡). The FAW larvae 𝑁𝐿(𝑡) infects the maize 

population 𝑁𝑀(𝑡) through contact. The maize population in the two sections (O and I) 

then progress from susceptible 𝑆𝑀(𝑡) into the infected  𝐼𝑀(𝑡) compartments under two 

forces of infection 𝛽𝑂and 𝛽𝐼 respectively.c Susceptible and infected maize populations at 

any time t in organic section (O) are denoted as 𝑆𝑂
𝑀(𝑡) and 𝐼𝑂

𝑀(𝑡) respectively, while the 

susceptible and infected maize population at any time t in insecticidal section (I) are 

denoted as 𝑆𝐼
𝑀(𝑡) and 𝐼𝐼

𝑀(𝑡) respectively.  

FAW population  𝑁𝐿(𝑡) slowly kills the host maize population 𝑁𝑀(𝑡) by residing in it, 

infecting and feeding on the maize biomass (Daudi et al., 2022). This contributes to an 

increased recruitment rate of FAW at a rate (𝜋1 , 𝜋2) and a reduction in maize population 

over time. The natural harvesting rate of the maize population is a constant rate denoted 

by π. The FAW larvae population declines at a constant rate 𝜇𝐿 = 𝜇1 + 𝜇2 which is either 

by the natural death rate 𝜇1 or progression into the pupal FAW life cycle at a constant 

rate 𝜇2. The exposure to insecticides causes death of the FAW larvae at constants rates δ, 

with 𝛿𝑁 denoting the normal larvae insecticidal induced death rate and 𝛿𝑅 denoting the 

resistance larvae insecticidal induced death rate, with 𝛿𝑁 < 𝛿𝑅. 

The total population in the model at time t will be,   

𝑁(𝑡) = 𝑁𝐿(𝑡) + 𝑁𝑀(𝑡).                                                                                                             (1)     

Where;    𝑁𝐿(𝑡) = 𝐿𝑁(𝑡) + 𝐿𝑅(𝑡)  and  𝑁𝑀(𝑡) = 𝑆𝑂
𝑀(𝑡) + 𝐼𝑂

𝑀(𝑡) + 𝑆𝐼
𝑀(𝑡) + 𝐼𝐼

𝑀(𝑡). 

The force of infection at any time t in organic section (O) is denoted as 𝛽𝑂 while in the 

insecticidal section (I) it is denoted as 𝛽𝐼, 

    𝛽𝑂 = 𝜂𝑂 (
𝐿𝑁+𝜀𝐿𝑅

𝑁𝑀
) ,   𝛽𝐼 = 𝜂𝐼 (

𝐿𝑁+𝜀𝐿𝑅

𝑁𝑀
)                                                                                             (2) 
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Where  𝛽𝑂 > 𝛽𝐼    and  0 < 𝛽𝑂, 𝛽𝐼 < 1,  0 < 𝜀 < 1 and infection coefficients 𝜂0 > 𝜂1. 

3.2 Model assumptions 

In this study, the following assumptions were made during model formulation: 

a) To reduce model complexity, the model only considers one larvae stage of the 

FAW life cycle. The stages are represented by the FAW recruitment rate 𝑒𝑁 and 

progression rate 𝜇2. 

b) FAW larvae 𝑁𝐿(𝑡) is the only pest interacting with the maize population at time t. 

c) Insecticidal sprays are the only control methods adopted against the FAW 

population. 

d) The term normal larvae denote the larvae not expressing the resistance traits. 

e) Negligible immigration and emigration rates of the adult FAW larvae population.  

f) Homogenous mixing of the FAW and maize population at any time t.  
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3.3 Model variables and parameters 

The following state variables and parameters are discussed as used in the model 

formulation. 

Table 1: Description of the model state variables 

State variable Description 

𝑆𝑂
𝑀(𝑡) Susceptible maize population in the organic section at any time t. 

𝐼𝑂
𝑀(𝑡) Infected maize population in the organic section at any time t. 

𝑆𝐼
𝑀(𝑡) Susceptible maize population in the insecticidal section at any time 

t. 

𝐼𝐼
𝑀(𝑡) Infected maize population in the insecticidal section at any time t. 

𝐿𝑁(𝑡) Normal larvae population at any time t. 

𝐿𝑅(𝑡) Resistant larvae population at any time t. 

 

Table 2: Description of Model parameters 

Model Parameter Description 

             𝛽 The force of infection from susceptible to infected maize population 

𝜃1 The harvesting rate of organic maize population 𝑁𝑂
𝑀(t) 

𝜃2 The harvesting rate of insecticidal sprayed maize population 𝑁𝐼
𝑀(𝑡)  

𝜂0  The infection coefficient in 𝛽0 

𝜂1 The infection coefficient in 𝛽1 
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3.4 Model flow chart 

Considering the state variables, parameters, and assumptions discussed above, we 

developed the model flow chart below, 

𝑒𝑁  The natural recruitment rate of 𝑁𝐿(𝑡) from the naturally occurring 

FAW population. 

                𝜋 The lost maize biomass in 𝑁𝑀(𝑡) at any time t due to caterpillar 

attack. 

𝜔 The rate at which normal larvae progress into the resistance larvae 

population. 

𝜌 The natural recruitment rate of maize biomass into the maize 

population. 

𝜇𝐿  The total population decrease rate of 𝑁𝐿(𝑡) at any time t. 

𝜇2 The rate of larvae progression to the pupal FAW life cycle. 

 𝜇1 The death rate of the FAW larvae at any time t due to natural causes. 

𝛿 The insecticidal-induced death rate in the 𝑁𝐿(𝑡) population 

𝜆 The survival rate of 𝐿𝑁(𝑡)  and 𝐿𝑅(𝑡) from the egg stage of the FAW 

population at any time t 

𝜋1, 𝜋2  The maize biomass from the 𝐼𝑂
𝑀(𝑡) and 𝐼𝐼

𝑀(𝑡) classes respectively, 

contributing directly to the 𝑁𝐿(𝑡) classes increased the natural 

recruitment rate. 
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Figure 1: Flow diagram for the FAW larvae - maize interaction model. 

3.5 Model equations 

From the assumptions and the model flow diagram above, the following system of 

equations are derived. The model is described by the following system of ordinary 

differential equations: 

 ( )11
M

M MO
O O O

dS
S S

dt
   = − − − ,                                                                                                 (3) 

1

M
M MO

O O O

dI
S I

dt
  = − ,                                                                                                                    (4)  

( )21
M

M MI
I I I

dS
S S

dt
   = − − − ,                                                                                                       (5)    

2

M
M MI

I I I

dI
S I

dt
  = − ,                                                                                                                          (6) 
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( ) ( )1 2

M MN
N O I L N N

dL
e I I L

dt
     = + + − + + ,                                                                         (7) 

 ( )( ) ( )1 21 M MR
N O I N L R R

d
L

L
e I I L

dt
    = − + + − ++ .                                                          (8) 

3.6 Model Analysis 

In this section we will investigate, the boundedness and the positivity of the model, 

determining the equilibrium points, the computation of the basic reproduction number and 

its sensitivity analysis, and finally the stability analysis of the equilibrium points. 

3.6.1 Positivity of solutions and invariant region 

Positivity ensures that the model is well-posed and the equations lie on the feasible region 

of the system thus realistic in representing pest-host interaction with positive values (Iqbal 

et al., 2020). Since the model system describes a living population of FAW larvae- maize 

interaction, then the state variables and the model parameters are positive at any time 𝑡 >

0. Generally, the solution to the initial value problems defined in 𝛺 exist and are unique 

in the given interval. They remain bounded in the positively invariant and attracting region 

𝛺; hence the model is defined to be biologically and epidemiologically well posed and the 

dynamics of the model can be sufficiently studied in 𝛺. 

3.6.2 Equilibrium points analysis 

These are the points when the system is in a stationary point or a steady state. They are 

also known as fixed points or critical points or singularity point. 

There are various types of equilibrium points in epidemiological modelling. In this study 

we discuss the Disease-free equilibrium point (𝐸0), Insecticidal free equilibrium point 

(𝐸𝐶), and Disease endemic equilibrium point (𝐸∗) 

3.6.3 Disease free equilibrium point (𝑬𝟎) 

This can also be referred to as the pest free equilibrium point. We assume that no FAW 

larvae population both at resistant and normal stages prevails in the system. Hence the 
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susceptible maize population in both the two sections i.e., the organic 𝑆𝑂
𝑀 and insecticidal 

𝑆𝐼
𝑀 compartmental classes grow exponentially to maturity with no FAW infestation. 

The E0 of the model system of equations (3) – (8) is obtained by setting all the 

{𝐿𝑁 , 𝐿𝑅 , 𝐼𝑂
𝑀, 𝐼𝐼

𝑀} = 0 , 𝛽0, 𝛽1 = 0, and (𝑆𝑂
𝑀′

, 𝐼𝑂
𝑀′

, 𝑆𝐼
𝑀′

, 𝐼𝐼
𝑀′

, 𝐿𝑅
′, 𝐿𝑁

′ = 0).       

3.6.4 Insecticidal free equilibrium point. (𝑬𝑪) 

Insecticides are a control measure used against FAW larvae population in the maize 

population at the section 𝑁𝐼
𝑀(𝑡). At insecticidal free equilibrium point, the FAW larvae is 

assumed to interact freely with the maize population under no control measures. The FAW 

larvae both in the normal and the resistant compartment classes coexist naturally with the 

susceptible maize population in the organic section 𝑁𝑂
𝑀(𝑡) without any control measures 

being applied to interfere with the interaction patterns.  

Therefore, the insecticidal maize population compartmental classes of the model are set 

to zero i.e., (𝑆𝐼
𝑀, 𝐼𝐼

𝑀 = 0), With {𝐿𝑁 , 𝐿𝑅 , 𝑆𝑂
𝑀, 𝐼𝑂

𝑀} ≠ 0 and (𝑆𝑂
𝑀′

, 𝐼𝑂
𝑀′

, 𝑆𝐼
𝑀′

, 𝐼𝐼
𝑀′

, 𝐿𝑅
′, 𝐿𝑁

′ =

0) .                

The insecticidal induced death rates on both the normal and the resistant larvae is also 

equated to zero. That is 𝛿𝑁 = 0 and 𝛿𝑅 = 0.  

3.6.5 Disease endemic equilibrium point (𝑬∗) 

An endemic equilibrium point is a state in the model system where the disease in the 

population approaches a constant (Affi, 2018). In the study we let 𝐸∗ denote the DEEP. 

3.6.6 Basic reproduction number (𝑹𝟎) 

R0 is used to estimate the number of secondary infections that could arise when one 

infected individual is introduced in a completely susceptible population (Guerra et al., 

2017). In this study, we use the next generation matrix as discussed in Alemneh et al., 

(2019) to determine the R0 of the FAW- maize interaction model. We evaluate the 

Jacobian matrix of the model system of equations for both the maize and the FAW 
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compartmental classes at DFEP and determine the spectral radius using Wolfram 

Mathematica software. 

3.6.7 Local and global stability analysis 

Local stability analysis of the FAW larvae-maize interaction model is useful in 

investigating whether a system returns to its steady state if a small perturbation is 

introduced in the system. We develop a Jacobian matrix of the model system of equations 

(3) – (8) and evaluate its value at: Disease-free equilibrium points, Insecticidal free 

equilibrium points and at Disease endemic equilibrium points. 

The global stability analysis of an equilibrium point helps determine the control conditions 

for a certain disease. Various methods of determining the global stability of dynamical 

systems exist today. In this study, we determine the global stability of a system using the, 

Castillo-Chavez method, Perron Eigen vector method and the Lyapunov method. 

3.6.8 Sensitivity analysis 

We conduct the sensitivity analysis to identify the key parameters that significantly affect 

the FAW larvae- maize interaction model. We learn whether on increasing a particular 

parameter value results in an increase in the basic reproduction number. This helps 

determine the key parameters to consider in the control strategies against the FAW larvae 

infestation into the maize population by managing the basic reproduction number of the 

infection. 

The normalized forward sensitivity index of a variable, 𝑅0, that depends differentially on 

parameter  𝑃` is defined by an equation  

𝛼𝑃`
𝑅0 =

𝜕𝑅0

𝜕𝑃`
    .    

𝑃`

𝑅0
                                                                                                                       (9) 

Where 𝑅0 represents the Basic reproduction number  

           𝑃` represent all the main parameter. 
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3.7 Numerical simulation  

Numerical analysis of the model system of equations (3 – 8) is performed to illustrate the 

analytic results of the research study. This is achieved by using the parameter values given 

in Table 5 which are obtained from literature and a few of them estimated. The initial 

values states are used as 𝑆𝑂
𝑀(0) = 1000,  𝐼𝑂

𝑀(0) = 0,  𝑆𝐼
𝑀(0) = 1000,  𝐼𝐼

𝑀(0) = 0 ,

𝐿𝑁(0) = 100,  𝐿𝑅(0) = 10 in addition to the parameter values. The simulations are 

conducted at a time range of between zero to 60 days. Numerical analysis of the model is 

conducted using a Matlab inbuilt solver based on Runge-Kutta order 5. The resulted 

simulation graphs are presented in the figures labelled 2 to 11. 
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CHAPTER FOUR 

RESULTS  

4.1 Overview 

This chapter presents the result findings from the model analysis, conducted using 

various well explained mathematical methods and numerical simulation conducted using 

Matlab inbuilt solver with data obtained from literature. 

4.2 Positivity and Invariant region 

4.2.1 Positivity of solutions 

We prove the positivity of solutions of our model system by stating and proving the 

Theorem1 below, (Cheneke, Rao, & Edesssa, 2022). 

Theorem 1 

Let the initial data set be  {𝑆𝑂
𝑀(0), 𝐼𝑂

𝑀(0),   𝑆𝐼
𝑀(0), 𝐼𝐼

𝑀(0), 𝐿𝑁(0), 𝑎𝑛𝑑 𝐿𝑅(0)  ≥

0}𝜖 𝛺 𝜖𝑅+
6 . Then the solution set 𝑆𝑂

𝑀(𝑡),    𝐼𝑂
𝑀(𝑡),    𝑆𝐼

𝑀(𝑡), 𝐼𝐼
𝑀(𝑡), 𝐿𝑁(𝑡), 𝑎𝑛𝑑  𝐿𝑅(t) is 

positive for all 𝑡 ≥ 0. 

Proof 

Let the variables  𝑆𝑂
𝑀(𝑡),    𝐼𝑂

𝑀(𝑡),    𝑆𝐼
𝑀(𝑡), 𝐼𝐼

𝑀(𝑡), 𝐿𝑁(𝑡), 𝑎𝑛𝑑  𝐿𝑅(𝑡) be solutions to the 

system of non-negative initial conditions, 

𝑆𝑂
𝑀(𝑡) ≥ 0, 𝐼𝑂

𝑀(𝑡) ≥ 0, 𝑆𝐼
𝑀(𝑡) ≥ 0 , 𝐼𝐼

𝑀(𝑡) ≥ 0, 𝐿𝑁(𝑡)  ≥ 0, 𝑎𝑛𝑑 𝐿𝑅(𝑡) ≥ 0.         (10) 

Starting with equation (1), 

𝑑𝑆𝑂
𝑀

𝑑𝑡
= 𝜌 − 𝛽𝑂𝑆𝑂

𝑀 − (1 − 𝜃1)𝜋𝑆𝑂
𝑀 .                                                                                                 

Clearly by inspection method, 𝜌 ≥ 0 on the assumption of non-negative model variables 

and parameters. 
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We need to show that, 

 
𝑑𝑆𝑂

𝑀

𝑑𝑡
≥ −𝛽𝑂𝑆𝑂

𝑀 − (1 − 𝜃1)𝜋𝑆𝑂
𝑀     ,   

𝑑𝑆𝑂
𝑀

𝑑𝑡
≥ −(𝛽𝑂 + (1 − 𝜃1)𝜋)𝑆𝑂

𝑀 . 

By separation of variables, we obtain 

 
𝑑𝑆𝑂

𝑀

𝑆𝑂
𝑀 ≥ −(𝛽𝑂 + (1 − 𝜃1)𝜋)𝑑𝑡. 

Upon integration with respect to time (𝑡) 

𝑆𝑂
𝑀(𝑡) ≥ 𝐶1𝑒

−(𝛽𝑂+(1−𝜃1)𝜋)𝑡  where C1 is a constant of integration at 𝑡 = 0 .                                 

That is,
1 (0)M

OC S= . 

Thus, 𝑆𝑂
𝑀(𝑡) ≥ 𝑆𝑂

𝑀(0)𝑒−(𝛽𝑂+(1−𝜃1)𝜋)𝑡 ≥ 0.                                                                         (11) 

Hence the first equation is positive. 

By applying the same procedure, we obtained 

𝐼𝑂
𝑀(𝑡) ≥ 𝐼𝑂

𝑀(0)𝑒−𝜃1𝜋𝑡 ≥ 0 ,                                                                                                     (12) 

𝑆𝐼
𝑀(𝑡) ≥ 𝑆𝐼

𝑀(0)𝑒−((1−𝜃2)𝜋+𝛽𝐼)𝑡 ≥ 0,                                                                                      (13) 

 𝐼𝐼
𝑀(𝑡) ≥ 𝐼𝐼

𝑀(0)𝑒−𝜃2𝜋𝑡 ≥ 0,                                                                                                      (14) 

𝐿𝑁(𝑡) ≥ 𝐿𝑁(0)𝑒−(𝜔+𝜇𝐿+𝛿𝑁)𝑡 ≥ 0,                                                                                          (15) 

𝐿𝑅(𝑡) ≥ 𝐿𝑅(0)𝑒−(𝜇𝐿+𝛿𝑅)𝑡 ≥ 0  .                                                                                              (16) 

Hence the solution set {𝑆𝑂
𝑀(𝑡),    𝐼𝑂

𝑀(𝑡),    𝑆𝐼
𝑀(𝑡), 𝐼𝐼

𝑀(𝑡), 𝐿𝑁(𝑡), 𝑎𝑛𝑑  𝐿𝑅(𝑡)} for the 

model system is proved to be positive at all 𝑡 ≥ 0. Hence the model equations lie in the 

feasible region. 
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4.2.2 Invariant region 

To prove for boundedness of the solution of our model system, we state and prove the 

following theorem as applied by (Rodkina & Schurz, 2009). 

Theorem 2 

The solution to the study model equations in section 3.5 is uniformly bounded in a 

proper subset 𝛺 = 𝛺𝑀ꭓ𝛺𝑓. Such that: 𝛺 = 𝛺𝑀 . 𝛺𝑓 = {𝑆𝑂
𝑀, 𝐼𝑂

𝑀 , 𝑆𝐼
𝑀, 𝐼𝐼

𝑀 , 𝐿𝑁 , 𝐿𝑅 ∈ 𝑅+
6 |𝑁𝑀 ≤

𝜌̃

𝜋̃
, 𝑁𝐿 ≤

𝜆̃

𝛿̃
} . 

With    𝛺𝑀 = {𝑆𝑂
𝑀, 𝐼𝑂

𝑀 , 𝑆𝐼
𝑀, 𝐼𝐼

𝑀𝜖 𝑅+
4 |𝑁𝑀 ≤

𝜌̃

𝜋̃
} and  𝛺𝑓 = {𝐿𝑁, 𝐿𝑅 ∈ 𝑅+

2 |𝑁𝐿 ≤
𝜆̃

𝛿̃
}. Then all the 

solutions to the model system move into and remain in 𝛺. 

Proof 

Getting the boundedness of solution for the maize population at any time t, we take the 

time derivative of our total maize population along its solution to get, 

 𝑁𝑀(𝑡) = 𝑆𝑂
𝑀(𝑡) + 𝐼𝑂

𝑀(𝑡) + 𝑆𝐼
𝑀(𝑡) + 𝐼𝐼

𝑀(𝑡), 

𝑑𝑁𝑚

𝑑𝑡
= 𝜌 − (1 − 𝜃1)𝜋𝑆𝑂

𝑀 − 𝜃1𝜋𝐼𝑂
𝑀 + 𝜌 − (1 − 𝜃2)𝜋𝑆𝑂

𝑀 − 𝜃2𝜋𝐼𝐼
𝑀,                                        

 
𝑑𝑁𝑚

𝑑𝑡
= (𝜌 + 𝜌) − 𝜋(𝑆𝑂

𝑀 + 𝑆𝐼
𝑀) − 𝜋(𝜃1𝑆𝑂

𝑀 + 𝜃2𝑆𝐼
𝑀) − 𝜋(𝜃1𝐼𝑂

𝑀 + 𝜃2𝐼𝐼
𝑀) ≤  𝜌̃ −

𝜋̃𝑁𝑀                                                                                                                                                (17) 

⟹ 
𝑑𝑁𝑀

𝑑𝑡
≤ 𝜌̃ − 𝜋̃𝑁𝑀.  

Where, 𝜌̃ = (𝜌 + 𝜌) and 𝜋̃𝑁𝑀 = 𝜋(𝑆𝑂
𝑀 + 𝑆𝐼

𝑀) + 𝜋(𝜃1𝑆𝑂
𝑀 + 𝜃2𝑆𝐼

𝑀) + 𝜋(𝜃1𝐼𝑂
𝑀 + 𝜃2𝐼𝐼

𝑀). 

Upon integration, through the linear constant coefficient method stated in Lemma 1 

(Society & Tables, 2008). 
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Lemma: The linear differential equation 
𝑑𝑁𝑀

𝑑𝑡
≤ 𝜌̃ − 𝜋̃𝑁𝑀 where a= 𝜋̃ ≠ 0 𝑎𝑛𝑑 𝑏 =

𝜌̃ are constants, has infinitely many solutions labeled by 𝑐𝜖𝑅  as; 

 𝑁𝑀(𝑡) ≤
𝜌̃

𝜋̃
+ 𝑁𝑀(0)𝑒−𝜋̃𝑡. 

proof 

𝑁𝑀
′(𝑡) − 𝜋̃𝑁𝑀(𝑡) ≤ 𝜌̃ also denoted as 𝑁𝑀

′ − 𝜋̃𝑁𝑀 ≤ 𝜌̃ . 

Introducing an integrating factor μ, we get 𝜇𝑁𝑀
′ − 𝜇𝜋̃𝑁𝑀 ≤ 𝜇𝜌̃. 

Let −𝜇𝜋̃ = 𝜇′, thus, 𝜇𝑁𝑀
′ + 𝜇′𝑁𝑀 ≤ 𝜇𝜌̃.   

The left-hand side can be expressed as a total derivative of a product of two functions,  

 (𝜇𝑁𝑀)′ ≤ 𝜇𝜌̃. 

Replacing the value, 𝜇 = 𝑒𝜋̃𝑡 in the equation above to get, 

 (𝑒𝜋̃𝑡𝑁𝑀)′ ≤ 𝑒𝜋̃𝑡𝜌̃ ,      (𝑒𝜋̃𝑡𝑁𝑀)′ ≤ (
1

𝜋̃
𝑒𝜋̃𝑡𝜌̃)′ , 

 ((𝑁𝑀 −
𝜌̃

𝜋̃
)𝑒𝜋̃𝑡)′ ≤ 0. 

Upon integration, 

 ((𝑁𝑀 −
𝜌̃

𝜋̃
) 𝑒𝜋̃𝑡) ≤ 𝑁𝑀(0),     𝑁𝑀(𝑡) ≤

𝜌̃

𝜋̃
+ 𝑁𝑀(0)𝑒−𝜋̃𝑡. 

𝑙𝑖𝑚
𝑡→∞

𝑁𝑚(𝑡) ≤
𝜌̃

𝜋̃
, thus as 𝑡 → ∞, we have 𝑁𝑀(𝑡) ≤

𝜌̃

𝜋̃
.                                                        (18) 

Similarly, for the FAW larvae population  

 
𝑑𝑁𝐿

𝑑𝑡
= 𝜆 + 𝜆𝜋1𝐼𝑂

𝑀 + 𝜆𝜋2𝐼𝐼
𝑀 + 𝜆𝜋1𝐼𝑂

𝑀 + 𝜆𝜋2𝐼𝐼
𝑀 − 𝜇𝐿𝐿𝑁 − 𝜇𝐿𝐿𝑅 − 𝛿𝑁𝐿𝑁 −

𝛿𝑅𝐿𝑅  ,                                                                                                                                         (19) 

 
𝑑𝑁𝐿

𝑑𝑡
≤ 𝜆̃ − 𝛿𝑁𝐿  ,                                                                                                                     (20) 
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Where, 𝜆̃ = 𝜆 + 𝜆𝜋1𝐼𝑂
𝑀 + 𝜆𝜋2𝐼𝐼

𝑀 + 𝜆𝜋1𝐼𝑂
𝑀 + 𝜆𝜋2𝐼𝐼

𝑀 and 𝛿𝑁𝐿 = 𝜇𝐿𝐿𝑁 + 𝜇𝐿𝐿𝑅 + 𝛿𝑁𝐿𝑁 +

𝛿𝑅𝐿𝑅  . 

Upon integration, 

lim
t→∞

 𝑁𝐿(𝑡) ≤
𝜆̃

𝛿̃
, thus as 𝑡 → ∞ we have  𝑁𝐿(𝑡) ≤

𝜆̃

𝛿̃
  .                                                       (21) 

It then follows that the solution to the model equations exists in the region defined by  

 𝛺 = 𝛺𝑀ꭓ𝛺𝑓 = {(𝑆𝑂
𝑀, 𝐼𝑂

𝑀, 𝑆𝐼
𝑀, 𝐼𝐼

𝑀 , 𝐿𝑅,𝐿𝑁)𝜀𝑅6
+} . 

Such that 𝑆𝑂
𝑀 ≥ 0, 𝐼𝑂

𝑀 ≥ 0, 𝑆𝐼
𝑀 ≥ 0, 𝐼𝐼

𝑀 ≥ 0, 𝐿𝑅 ≥ 0, 𝐿𝑁 ≥ 0 .  

With 𝛺𝑀 = (𝑆𝑂
𝑀 + 𝐼𝑂

𝑀 + 𝑆𝐼
𝑀 + 𝐼𝐼

𝑀) ≤
𝜌̃

𝜋̃
 𝑎𝑛𝑑 𝛺𝑓 = ( 𝐿𝑅 + 𝐿𝑁 ) ≤

𝜆̃

𝛿̃
 .                       (22) 

This proves the boundedness of the solution inside 𝛺 which means that all the solutions 

to the system of the model equations (3) – (8) start in 𝛺 and stay in 𝛺 at time 𝑡 ≥ 0. 

Generally, the solution to initial value problems defined in 𝛺 exists and is unique in the 

given interval. They remain bounded in the positively invariant and bounded region 𝛺; 

hence the system is biologically and eco-epidemiologically well-posed and the dynamics 

of the model can be sufficiently studied in 𝛺. 

4.3 Equilibrium points analysis 

All systems of non-linear differential equations may have none, one, many, or even 

infinite steady states (Harianto, 2017). In this study, we discuss the disease/larvae free 

equilibrium points (𝐸0), insecticidal/control free equilibrium points (𝐸𝐶), and disease 

endemic equilibrium points (𝐸∗). 

4.3.1 Disease free equilibrium points (𝐄𝟎) 

The value of 𝐸0 is obtained by setting all the infectious classes to zero,{𝐿𝑁 , 𝐿𝑅 , 𝐼𝑂
𝑀, 𝐼𝐼

𝑀} =

0 with 𝛽0, 𝛽1 = 0 and (𝑆𝑂
𝑀′

, 𝐼𝑂
𝑀′

, 𝑆𝐼
𝑀′

, 𝐼𝐼
𝑀′

, 𝐿𝑅
′, 𝐿𝑁

′ = 0) to get, 



28 
 

𝑆𝑂
𝑀0 =

𝜌

(1−𝜃1)𝜋
, 𝐼𝐼

𝑀0 = 0, 𝑆𝐼
𝑀0 =

𝜌

(1−𝜃2)𝜋
, 𝐼𝐼

𝑀0 = 0, 𝐿𝑁
0 = 0, and 𝐿𝑅

0 =

0.                                                                                                                                                      (23)  

4.3.2 Insecticidal free equilibrium point. (𝐄𝐂) 

Let 𝐸𝐶 = (𝑆𝑂
𝑀𝑐,  𝐼𝑂

𝑀𝑐 ,  𝑆𝐼
𝑀𝑐,  𝐼𝐼

𝑀𝑐, 𝐿𝑁
 𝑐 ,  𝑎𝑛𝑑 𝐿𝑅

𝑐 ) denote the control-free equilibrium points. 

We solve the control equilibrium points by expressing it in terms of the force of infection 

𝛽0
𝑐 evaluated at control free equilibrium point. We set (𝑆𝐼

𝑀, 𝐼𝐼
𝑀 = 0), {𝐿𝑁 , 𝐿𝑅 , 𝑆𝑂

𝑀, 𝐼𝑂
𝑀} ≠

0, (𝑆𝑂
𝑀′

, 𝐼𝑂
𝑀′

, 𝑆𝐼
𝑀′

, 𝐼𝐼
𝑀′

, 𝐿𝑅
′, 𝐿𝑁

′ = 0) , 𝛿𝑁 = 0 and 𝛿𝑅 = 0 to get, 

 𝑆𝑂
𝑀𝑐 =

𝜌

(𝛽0
𝑐+(1−𝜃1)𝜋)

  ,𝐼𝑂
𝑀𝑐 =

𝛽0
𝑐

𝜃1𝜋
(

𝜌

(𝛽0
𝑐+(1−𝜃1)𝜋)

),𝑆𝐼
𝑀𝑐 = 0 , 𝐼𝐼

𝑀𝑐 = 0 , 𝐿𝑁
𝑐 =

𝜌(𝛽0
𝑐
𝜆𝜋1+𝑒𝑁𝜋𝜆𝜃1)

𝜋𝜓(𝛽0
𝑐
+𝜋(1−𝜃1))𝜃1       

, 𝐿𝑅
𝑐 =

(1−𝑒𝑁)𝜆

𝜇𝐿
+

𝛽0
𝑐𝜆𝜌𝜋1

𝜋𝜇𝐿(𝛽0
𝑐+𝜋(1−𝜃1))𝜃1

+
𝜌𝜔(𝛽0

𝑐𝜆𝜋1+𝑒𝑁𝜋𝜆𝜃1)

𝜋𝜇𝐿𝜓(𝛽0
𝑐+𝜋(1−𝜃1))𝜃1

 .              (24) 

Evaluating for the value of  𝛽0
𝑐 , as  𝛽0

𝑐 =
1

2
(𝑏1 + √4𝑏0 + 𝑏1

2). We let 𝜛 =

(𝜔 + 𝜇𝐿 + 𝛿𝑁), 𝜎 = (𝜇𝐿 + 𝛿𝑅) and 𝜓 = (𝜔 + 𝜇𝐿). 

Where 𝑏1 = 𝜂𝑂𝜆
𝜌(𝜇𝐿+𝜀(𝜓+𝜔)𝜋1)+𝜋2𝜃1𝜀𝜓+𝑒𝑁𝜀𝜓−𝜌𝜇𝑁𝜓𝜋𝜃1

𝜌𝜇𝑁𝜓
 , and    

      𝑏0 = 𝜂𝑂𝜆
𝜋𝜃1𝜀𝜓+𝑒𝑁𝜋𝜀𝜓+𝑒𝑁𝜌(𝜇𝐿+𝜀𝜔+(−1+𝑒𝑁)𝑏)

𝜌𝜇𝑁𝜓      
. 

4.3.3 Disease endemic equilibrium point (𝐄∗) 

An Endemic Equilibrium point is a state in the model system where the disease in the 

population approaches a constant (Affi, 2018). Let 𝐸∗ = 𝑆𝑂
𝑀∗, 𝐼𝑂

𝑀∗, 𝑆𝐼
𝑀∗, 𝐼𝐼

𝑀∗, 𝐿𝑁
∗ , 𝐿𝑅

∗  

denote disease endemic Equilibrium point. 

Solving for the system of equations (3) – (8) in terms of the force of infections 𝛽0
∗ and 𝛽𝐼

∗, 

 𝑆𝑂
𝑀∗ =

𝜌

(𝛽𝑂
∗ +(1−𝜃1)𝜋)

, 𝐼𝑂
𝑀∗ =

𝛽𝑂
∗

𝜃1𝜋
(

𝜌

(𝛽𝑂
∗ +(1−𝜃1)𝜋)

), 𝑆𝐼
𝑀∗ =

𝜌

(𝛽𝐼
∗+(1−𝜃2)𝜋)

, 𝐼𝐼
𝑀∗ =

𝛽𝐼
∗

𝜃2𝜋
(

𝜌

𝛽𝐼
∗+(1−𝜃2)𝜋

), 

 𝐿𝑁
∗ =

𝜆

𝜛
(𝑒𝑁 +

𝛽𝑜
∗𝜌𝜋1

𝜋(𝛽𝑜
∗+𝜋(1−𝜃1))𝜃1

+
𝛽𝐼

∗𝜌𝜋2

𝜋(𝛽𝐼
∗+𝜋(1−𝜃2))𝜃2

), 
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 𝐿𝑅
∗ =

𝜆

𝜎
(1 − 𝑒𝑁 + 𝑒𝑁

𝜆𝜔

𝜛
+

𝜌(𝜛+𝜆𝜔)𝜋1𝛽𝑜
∗

𝜋𝜛𝜃1(𝜋+𝛽𝑜
∗−𝜋𝜃1)

+
𝜌(𝜛+𝜆𝜔)𝜋2𝛽𝐼

∗

𝜋𝜛𝜃2(𝜋+𝛽𝐼
∗−𝜋𝜃2)

) .                             (25) 

Now substituting the values of 𝑆𝑂
𝑀∗, 𝐼𝑂

𝑀∗, 𝑆𝐼
𝑀∗, 𝐼𝐼

𝑀∗, 𝐿𝑁
∗ , 𝐿𝑅

∗  in 𝛽0
∗ and 𝛽𝐼

∗ and introducing the 

relation 𝜂1𝛽0
∗ = 𝜂0𝛽1

∗   which implies  𝛽1
∗ =

𝜂1

𝜂0
𝛽0

∗,  𝛽0
∗ =

𝜂0

𝜂1
𝛽1

∗ then replacing into the 

values of the endemic equilibrium points to obtain the value of 𝛽1
∗. 

For the model system to lie in the positively invariant region, we let the value of  

𝛽1
∗ = −

𝑛2

3
+

21 3⁄ (−3𝑛1+𝑛2
2)

3(−27𝑛0+9𝑛1𝑛2−2𝑛2
3+√4(3𝑛1−𝑛2

2)3+(27𝑛0−9𝑛1𝑛2+2𝑛2
3)2)1 3⁄

+

(−27𝑛0+9𝑛1𝑛2−2𝑛2
3+√4(3𝑛1−𝑛2

2)3+(27𝑛0−9𝑛1𝑛2+2𝑛2
3)2)1 3⁄

321 3.⁄ , 

 𝛽1
∗ > 0 if and only if 𝑛0, 𝑛1, 𝑛2 > 0. 

4.4 Basic Reproduction Number (𝐑𝟎) 

𝑅0 is used to give an estimate of secondary infections that could arise when one infectious 

individual gets introduced into a completely susceptible environment (Guerra et al., 2017). 

We determine the value of R0 using the next generation matrix as discussed in (Alemneh 

et al., 2019). We evaluate the Jacobian matrix of the model system of equations at DFEP 

and determine the spectral radius using Wolfram Mathematica software.  

DFEP,  {𝐸0 = (𝑆𝑂
𝑀0, 𝐼𝑂

𝑀0, 𝑆𝐼
𝑀0, 𝐼𝐼

𝑀0, 𝐿𝑁
0 , 𝐿𝑅

0 ) = (
𝜌

(1−𝜃1)𝜋
, 0,

𝜌

(1−𝜃2)𝜋
, 0,0,0)}. 

The vector for the infected and infectious classes is denoted by 𝑋 = [𝐼𝑂
𝑀 𝐼𝐼

𝑀 𝐿𝑁  𝐿𝑅] and the 

vector for the uninfected classes is denoted as 𝑌 = [𝑆𝑂
𝑀𝑆𝐼

𝑀].         

Using the notation f  to denote the matrix for new infection and v to denote the matrix of 

the transfer of infections in the system,  

          f = (

𝛽𝑂𝑆𝑂
𝑀

𝛽𝐼𝑆𝐼
𝑀

0
0

) ,  and    𝑣 =

(

 
 

𝜃𝐼𝜋𝐼𝑂
𝑀

𝜃2𝜋𝐼𝐼
𝑀

−𝜆(𝑒𝑁 + 𝜋1𝐼𝑂
𝑀 + 𝜋2𝐼𝐼

𝑀) + (𝜛)𝐿𝑁

−((1 − 𝑒𝑁) + 𝜋1𝐼𝑂
𝑀 + 𝜋2𝐼𝐼

𝑀) 𝜆 − 𝜔𝐿𝑁 + (𝜇𝐿 + 𝛿𝑅)𝐿𝑅)

 
 

 .         
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Evaluating the Jacobian matrices of f and v at DFEP, to get 𝐹 = [
𝜕𝑓

𝜕𝑋
]
𝐸0

, 𝑉 = [
𝜕𝑣

𝜕𝑋
]
𝐸0

, and 

𝐸0 the disease-free equilibrium point. 

 𝐽(𝑓)𝐸0
= 𝐹 =

(

 
 
 

𝜕(𝛽𝑂𝑆𝑂
𝑀)

𝜕𝐼𝑂
𝑀

𝜕(𝛽𝑂𝑆𝑂
𝑀)

𝜕𝐼𝐼
𝑀

𝜕(𝛽𝑂𝑆𝑂
𝑀)

𝜕𝐿𝑁

𝜕(𝛽𝑂𝑆𝑂
𝑀)

𝜕𝐿𝑅

𝜕(𝛽𝑂𝑆𝑂
𝑀)

𝜕𝐼𝑂
𝑀

𝜕(𝛽𝑂𝑆𝑂
𝑀)

𝜕𝐼𝐼
𝑀

𝜕(𝛽𝐼𝑆𝐼
𝑀)

𝜕𝐿𝑁

𝜕(𝛽𝐼𝑆𝐼
𝑀)

𝜕𝐿𝑅

0 0 0 0
0 0 0 0 )

 
 
 

𝐸𝑂

.                                                       (26) 

with, 𝛽𝑂 = 𝜂𝑂 (
𝐿𝑁+𝜀𝐿𝑅

𝑁𝑀
), and 𝛽𝐼 = 𝜂𝐼 (

𝐿𝑁+𝜀𝐿𝑅

𝑁𝑀
). 

 𝐹 =

(

  
 

0 0 (
𝜂𝑂

𝑆𝑂
𝑀0+𝑆𝐼

𝑀0) 𝑆𝑂
𝑀0 (

𝜀𝜂𝑂

𝑆𝑂
𝑀0+𝑆𝐼

𝑀0) 𝑆𝐼
𝑀0

0 0 (
𝜂𝐼

𝑆𝑂
𝑀0+𝑆𝐼

𝑀0) 𝑆𝐼
𝑀0 (

𝜀𝜂𝐼

𝑆𝑂
𝑀0+𝑆𝐼

𝑀0) 𝑆𝐼
𝑀0

0 0 0 0
0 0 0 0 )

  
 

= (

0 0 𝜂̃𝑂 𝜀𝜂̃𝑂

0 0 𝜂̃𝐼 𝜀𝜂̃𝐼

0 0 0 0
0 0 0 0

) .                             (27) 

With 𝑆𝑂
𝑀0,  𝑆𝐼

𝑀0 being the population of 𝑆𝑂
𝑀, 𝑆𝐼

𝑀  is at the disease-free equilibrium point. 

We let 𝜂̃𝑜 =
𝜂0(−1+𝜃2)

−2+𝜃1+𝜃2
  , 𝜂̃1 =

𝜂1(−1+𝜃1)

−2+𝜃1+𝜃2
  , 𝜛 = (𝜔 + 𝜇𝐿 + 𝛿𝑁) and 𝜎 = (𝜇𝐿 + 𝛿𝑅). 

𝐽(𝑣)𝐸0
= 𝑉 = (

𝜃𝐼𝜋 0 0 0
0 𝜃2𝜋 0 0

−𝜆𝜋𝐼 −𝜆𝜋2 (𝜛) 0

−𝜆𝜋𝐼 −𝜆𝜋2 −𝜔 (𝜎)

) .                                                                    (28) 

𝑉−1 =

(

 
 
 
 
 
 

1

𝜃𝐼𝜋
0 0 0

0
1

𝜃2𝜋
0 0

𝜆𝜋𝐼

𝜛𝜋𝜃𝐼

𝜆𝜋2

𝜛𝜋𝜃2

1

𝜛
0

𝜆𝜔𝜋𝐼 + 𝜆𝜋𝐼𝜛

𝜛𝜋𝜎𝜃𝐼

𝜔𝜆𝜋2 + 𝜆𝜋2𝜛

𝜋𝜛𝜎𝜃2

𝜔

𝜛𝜎

1

𝜎)

 
 
 
 
 
 

.                                                                 (29) 

The dominant eigen value in  𝐺 = 𝐹𝑉−1 is the value of 𝑅0 = 𝜌(𝐹𝑉−1) = 𝜌𝐺. It is the 

spectral radius of matrix G. 
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 𝐹𝑉−1 =  

(

 
 

(𝜆𝜛𝜋𝐼+𝜆𝜋𝐼𝜔)𝜀𝜂̃𝑂

𝜋𝜎𝜛𝜃𝐼
+

𝜆𝜋𝐼𝜂̃𝑂

𝜋𝜛𝜃𝐼

(𝜆𝜛𝜋2+𝜆𝜋2𝜔)𝜀𝜂̃𝑂

𝜋𝜎𝜛𝜃2
+

𝜆𝜋2𝜂̃𝑂

𝜋𝜛𝜃2

𝜔𝜀𝜂̃𝑂

𝜎𝜛
+

𝜂̃𝑂

𝜔

𝜀𝜂̃𝑂

𝜎

(𝜆𝜛𝜋𝐼+𝜆𝜋𝐼𝜔)𝜀𝜂̃1

𝜋𝜎𝜛𝜃𝐼
+

𝜆𝜋𝐼𝜂̃𝐼

𝜋𝜛𝜃𝐼

(𝜆𝜛𝜋2+𝜆𝜋2𝜔)𝜀𝜂̃𝐼

𝜋𝜎𝜛𝜃2
+

𝜆𝜋2𝜂̃𝐼

𝜋𝜛𝜃2

𝜔𝜀𝜂̃1

𝜎𝜛
+

𝜂̃1

𝜔

𝜀𝜂̃𝐼

𝜎

0 0 0 0
0 0 0 0 )

 
 

.     

The eigen values of the next generation matrix G are determined using Wolfram 

Mathematica as  

  {0,0,0,
𝜆(𝜛𝜋2𝜀𝜂̃𝐼𝜃𝐼+𝜔𝜋2𝜀𝜂̃𝐼𝜃𝐼+𝜎𝜋2𝜂̃𝐼𝜃𝐼+𝜛𝜋𝐼𝜀𝜂̃𝑂𝜃2+𝜔𝜋𝐼𝜀𝜂̃𝑂𝜃2+𝜎𝜋𝐼𝜂̃𝑂𝜃2)

𝜛𝜋𝜃𝐼𝜃2
} ,                             (30) 

The dominant eigen value and hence the value of 𝑅0 is  

𝑅0 = {
𝜆𝜋2𝜂̃𝐼

𝜋𝜛𝜃2
+

𝜀𝜆𝜋2𝜂̃𝐼

𝜋𝜎𝜃2
+

𝜀𝜆𝜔𝜋2𝜂̃𝐼

𝜋𝜛𝜎𝜃2
+

𝜆𝜋1𝜂̃0

𝜋𝜛𝜃1
+

𝜀𝜆𝜋1𝜂̃0

𝜋𝜎𝜃1
+

𝜀𝜆𝜔𝜋1𝜂̃0

𝜋𝜛𝜎𝜃1
} .                                   (31) 

4.4.1 Biological interpretation of 𝐑𝟎. 

As shown in the studies  (Ronoh et al., 2021), (Alemneh et al., 2019)  𝑅0 expresses the 

average expected secondary infections after an average complete; organic maize-normal 

larvae, organic maize-resistant larvae, insecticidal sprayed maize-normal larvae, 

insecticidal sprayed maize-resistant larvae interaction. 𝑅0 can then be expressed as the 

sum of interactions,  

 𝑅0 = 𝑅0
1 + 𝑅0

2 + 𝑅0
3 + 𝑅0

4 + 𝑅0
5 + 𝑅0

6 ,                                                                                 (32) 

Where,𝑅0
𝐼𝑛 = 𝑅0

1 + 𝑅0
2 + 𝑅0

3 and 𝑅0
𝑂𝑟 = 𝑅0

4 + 𝑅0
5 + 𝑅0 

6  .                                     

With 𝑅0
1 =

𝜆𝜋2𝜂̃𝐼

𝜋𝜛𝜃2
,    𝑅0

2 =
𝜀𝜆𝜋2𝜂̃𝐼

𝜋𝜎𝜃2
,  𝑅0

3 =
𝜀𝜆𝜔𝜋2𝜂̃𝐼

𝜋𝜛𝜎𝜃2
  . 

         𝑅0
4 =

𝜆𝜋1𝜂̃0

𝜋𝜛𝜃1
,    𝑅0

5 =
𝜀𝜆𝜋1𝜂̃0

𝜋𝜎𝜃1
,    𝑅0

6 =
𝜀𝜆𝜔𝜋1𝜂̃0

𝜋𝜛𝜎𝜃1
  .                                                                         

𝑅0
𝐼𝑛 represents the number of new infections on Insecticidal maize population 𝑁𝑂

𝑀(𝑡) 

arising from both the normal larvae 𝐿𝑁 and the resistant larvae 𝐿𝑅,  

 𝑅0
𝐼𝑛 =

𝜆𝜋2𝜂̃𝐼

𝜋𝜛𝜃2

+
𝜀𝜆𝜋2𝜂̃𝐼

𝜋𝜎𝜃2

, +
𝜀𝜆𝜔𝜋2𝜂̃𝐼

𝜋𝜛𝜎𝜃2

 .                                                                                           (33) 
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𝑅0
𝑂𝑟 represents the number of new infections on organic maize population 𝑁0

𝑀(𝑡) arising 

from both the normal larvae 𝐿𝑁 and the resistant larvae 𝐿𝑅, 

𝑅0
𝑂𝑟  =

𝜆𝜋1𝜂̃0

𝜋𝜛𝜃1
+

𝜀𝜆𝜋1𝜂̃0

𝜋𝜎𝜃1
+

𝜀𝜆𝜔𝜋1𝜂̃0

𝜋𝜛𝜎𝜃1
.                                                                                (34) 

4.5 Stability of equilibrium points. 

In this study, we determined global asymptotic stability for three model steady states using 

the Castillo-Chavez, the Perron eigenvector and the Lyapunov methods. The steady states 

are defined to have local asymptotic stability if the eigenvalues of the generated Jacobian 

matrix (𝐽) evaluated at each (E), have non-positive real parts. The steady states are 

asymptotically unstable if at least one of the eigenvalues has a positive real part. This is 

the linearity stability analysis theorem. 

Let the model system of equations be denoted in vector form as 

𝑑𝑓

𝑑𝑡
= 𝑓(𝑦).                                                                                                                               (35) 

With, 𝑦 = (𝑆𝑂
𝑀(𝑡), 𝐼𝑂

𝑀(𝑡), 𝑆𝐼
𝑀(𝑡), 𝐼𝐼

𝑀(𝑡), 𝐿𝑁(𝑡), 𝐿𝑅(𝑡)). 

We then write 𝑓(𝑦) in matrix form as  

 𝑓(𝑦) =

(

 
 
 
 

𝜌 − 𝛽𝑂𝑆𝑂
𝑀 − (1 − 𝜃1)𝜋𝑆𝑂

𝑀

𝛽𝑂𝑆𝑂
𝑀 − 𝜃1𝜋𝐼𝑂

𝑀

𝜌 − (1 − 𝜃2)𝜋𝑆𝐼
𝑀 − 𝛽𝐼𝑆𝐼

𝑀

𝛽𝐼𝑆𝐼
𝑀 − 𝜃2𝜋𝐼𝐼

𝑀

𝜆(𝑒𝑁 + 𝜋1𝐼𝑂
𝑀 + 𝜋2𝐼𝐼

𝑀) − (𝜔 + 𝜇𝐿 + 𝛿𝑁)𝐿𝑁

((1 − 𝑒𝑁) + 𝜋1𝐼𝑂
𝑀 + 𝜋2𝐼𝐼

𝑀)𝜆 + 𝜔𝐿𝑁 − (𝜇𝐿 + 𝛿𝑅)𝐿𝑅)

 
 
 
 

.                              (36)     

The matrix 𝑓(𝑦) is used to evaluate Jacobian matrix of the model and thus the stability 

analysis for the various model stationary points. 
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4.5.1 Local stability analysis of Disease- free Equilibrium point (𝐄𝟎) 

Theorem 3 

The disease-free steady state for the FAW larvae-maize interaction model described by 

the equations (3)- (8) is described to have local asymptotic stability if all the below 

conditions are satisfied: 

1. 𝑎1, 𝑎2,  𝑎3,  𝑎4,  𝑎5 > 0, 

2. 𝑎1𝑎2 − 𝑎3 > 0, 

3. 𝑎3(𝑎1𝑎2 − 𝑎3) − 𝑎1(𝑎1𝑎4 − 𝑎5) > 0, 

4. 𝑎3
2𝑎4 − 𝑎1

2𝑎4
2 − 𝑎1𝑎5𝑎2

2 > 0. 

Otherwise, 𝐸0 is unstable. 

Proof 

Evaluating the Jacobian matrix at DFEP to get, 

 (𝐽𝑓)𝐸𝑂
=

(

 
 
 

−(1 − 𝜃1)𝜋 0 0 0 −𝜂̃𝑂 −𝜀𝜂̃𝑂

0 −𝜃1𝜋 0 0 𝜂̃𝑂 𝜀𝜂̃𝑂

0 0 −(1 − 𝜃2)𝜋 0 −𝜂̃𝐼 −𝜀𝜂̃𝐼

0 0 0 −𝜃2𝜋 𝜂̃𝐼 𝜀𝜂̃𝐼

0 𝜆𝜋1 0 𝜆𝜋2 −𝜛 0
0 𝜆𝜋1 0 𝜆𝜋2 𝜔 −𝜎 )

 
 
 

 .               (37) 

The first eigenvalue of the above Jacobian matrix is 𝜆1 = −(1 − 𝜃1)𝜋 which is less than 

zero and hence stable. Applying the Routh-Hurwitz stability criterion as shown by (Clark, 

1992), the roots to the characteristic equation (38) below have negative real parts iff the 

coefficients 𝑎𝑖 are non-negative and matrices 𝐽 > 0  for 𝑖 = 1,2,3,4,5. 

𝐽𝑓𝐸0∗
=

(

 
 

−𝜃1𝜋 − 𝜆 0 0 𝜂̃𝑂 𝜀𝜂̃𝑂

0 −(1 − 𝜃2)𝜋 − 𝜆 0 −𝜂̃𝐼 −𝜀𝜂̃𝐼

0 0 −𝜃2𝜋 − 𝜆 𝜂̃𝐼 𝜀𝜂̃𝐼

𝜆𝜋1 0 𝜆𝜋2 −𝜛 − 𝜆 0
𝜆𝜋1 0 𝜆𝜋2 𝜔 −𝜎 − 𝜆)

 
 

 .                         
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Using Mathematica software, the characteristic polynomial of the above matrix is 

evaluated as  

𝑎0𝜆
5 + 𝑎1𝜆

4 + 𝑎2𝜆
3 + 𝑎3𝜆

2 + 𝑎4𝜆 + 𝑎5 = 0.                                                               (38) 

Where 𝜆𝑖 = 1(1)5 are the eigenvalues.  

By the Routh-Hurwitz criterion for stability analysis, the model system is proved to be 

locally asymptotically stable at disease-free steady state if and only if  𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5 >

0, 𝑎1𝑎2 − 𝑎3 > 0, 𝑎3(𝑎1𝑎2 − 𝑎3) − 𝑎1(𝑎1𝑎4 − 𝑎5) > 0 and 𝑎3
2𝑎4 − 𝑎1

2𝑎4
2 − 𝑎1𝑎5𝑎2

2 >

0.  As shown in the Routh-Hurwitz Table 3 below.  

Hence all the eigenvalues are negative and thus DFE is locally asymptotically stable. 

Table 3: Routh-Hurwitz stability criterion 

𝜆5 𝑎0 𝑎2 𝑎4 

𝜆4 𝑎1 𝑎3 𝑎5 

𝜆3 𝑎4𝑎3 − 𝑎5𝑎2

𝑎4
 

𝑎4𝑎1 − 𝑎5𝑎0

𝑎4
        0            

𝜆2 𝑎1𝑎2𝑎3 − 𝑎3
2 − 𝑎1

2𝑎4 − 𝑎1𝑎5

𝑎1𝑎2 − 𝑎3
 

𝑎5𝑎1𝑎2 − 𝑎5𝑎3

𝑎2𝑎1 − 𝑎3
 0 

𝜆1 𝑎1𝑎2(𝑎3𝑎4 − 𝑎2𝑎5) + 𝑎5
2 + 𝑎2𝑎3𝑎5 − (𝑎1

2𝑎4 − 𝑎3
2)𝑎4

𝑎1𝑎2 − 𝑎3
 

0 0 

𝜆0 0 0 0 

 

4.5.2 Global stability analysis of Disease-free Equilibrium point (𝑬𝟎) 

Let define 𝑓 (𝑥) as,  

 𝑓 (𝑥) = (𝐹 − 𝑉)𝑥 − 𝐹(𝑥) + 𝑉(𝑥) , Where 𝑥 = (𝐼𝑂
𝑀, 𝐼𝐼

𝑀, 𝐿𝑁 , 𝐿𝑅).                                  (39) 

Also, let define the value 𝑥′ = (𝐹 − 𝑉)𝑥 − 𝑓(𝑥) with the values of  𝐹 and 𝑉 as defined 

previously in section 4.4 in equations (27) and (28) respectively. 𝜔𝑇 ≥ 0 is defined as the 
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perron eigenvector or the left eigenvector corresponding to the eigenvalue 𝜌(𝑉−1𝐹) =

𝜌(𝐹𝑉−1) = 𝑅0.  

Theorem 4  

Let 𝐹, V, and 𝑓(𝑥) be defined as shown above. If 𝑓(𝑥) ≥ 0 in 𝛺𝜖𝑅+
6  the model system, 

𝐹 ≥ 0, 𝑉−1 ≥ 0, and 𝑅0 ≤ 1 then we have 𝐿 = 𝜔𝑇𝑉−1𝑥 as the Lyapunov function for the 

model system of equations as shown in the study done by (Koutsourelakis, 2009). 

Proof 

We start by getting the derivative of 𝐿 along the solutions to the model equations (3) – (8). 

 𝐿′ = 𝜔𝑇𝑉−1𝑥′ = 𝜔𝑇𝑉−1(𝐹 − 𝑉)𝑥 − 𝜔𝑇𝑉−1𝑓(𝑥) , since 𝑥′ = (𝐹 − 𝑉)𝑥 − 𝑓(𝑥), 

      = (𝑅0 − 1)𝜔𝑇𝑉−1𝑓(𝑥).                                                                                                   (40)  

And since as shown above, we have that 𝜔𝑇 ≥ 0, 𝑉−1 ≥ 0, and 𝑓(𝑥) ≥ 0 in 𝛺𝜖𝑅+
6 , then 

the last term is negative. If 𝑅0 ≤ 1, then 𝐿′ ≤ 1 in 𝛺 and thus 𝐿 is taken to be the Lyapunov 

function for the model system. We determine  

𝜔𝑇 = [𝜔1 𝜔2 𝜔3 𝜔4]𝑇 = 𝜔𝑇𝑉−1𝐹 = 𝑅0𝜔
𝑇 = [0 0 0 1]𝑇  .                 (41) 

Therefore,  

 𝑉−1 =

(

 
 
 
 

1

𝜃𝐼𝜋
0 0 0

0
1

𝜃2𝜋
0 0

𝜆𝜋𝐼

𝜛𝜋𝜃𝐼

𝜆𝜋2

𝜛𝜋𝜃2

1

𝜛
0

𝜆𝜔𝜋𝐼+𝜆𝜋𝐼𝜛

𝜛𝜋𝜎𝜃𝐼

𝜔𝜆𝜋2+𝜆𝜋2𝜛

𝜛𝜎𝜋𝜃2

𝜔

𝜛𝜎

1

𝜎)

 
 
 
 

  .                                                                    (42) 

as generated in section 4.4  
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 𝜔𝑇𝑉−1 =

[
 
 
 
 
 
 
𝜆𝜔𝜋𝐼+𝜆𝜋𝐼𝜛

𝜛𝜋𝜎𝜃𝐼

𝜔𝜆𝜋2+𝜆𝜋2𝜛

𝜛𝜎𝜋𝜃2
𝜔

𝜛𝜎
1

𝜎 ]
 
 
 
 
 
 

  .                                                                                                         (43) 

Thus,  

𝐿 = 𝜔𝑇𝑉−1𝑥 = (
𝜆𝜔𝜋𝐼+𝜆𝜋𝐼𝜛

𝜛𝜋𝜎𝜃𝐼
) 𝐼0

𝑀 + [
𝜔𝜆𝜋2+𝜆𝜋2𝜛

𝜛𝜎𝜋𝜃2
] 𝐼𝐼

𝑀 + [
𝜔

𝜛𝜎
] 𝐿𝑁 + [

1

𝜎
] 𝐿𝑅 .                    (44)     

is the Lyapunov function for the model system (3) – (8). 

By Perron-Frobenius, we let  

𝑉−1𝐹, 𝑓(𝑥) ≥ 0 with 𝑓(𝑥0) = 0, 𝐹 ≥ 0, 𝑉−1 ≥ 0                                                              (45) 

to be irreducible and positive in 𝛺𝜖𝑅+
6 , it follows then that 𝜔𝑇 > 0. Hence, (Arsie & 

Ebenbauer, 2009) by Lasalle’s Invariant principle, 

 𝐿′ = 0 shows that 𝜔𝑇𝑥 = 0 and 𝑥 = 0.                                                                                (46)  

Thus, our disease-free steady state (𝐸0) is Globally asymptotically stable. 

We also prove that the disease-free steady state has global asymptotic stability using the 

Castillo- Chavez method as shown below: 

We apply the method established by (Castillo-chavez, 2001). We start first by rewriting 

the system of model equations in the form: 

 
𝑑𝑋

𝑑𝑡
= 𝐹(𝑋, 𝑍),                                                                                                                              (47) 

 
𝑑𝑍

𝑑𝑡
= 𝐺(𝑋, 𝑍), 𝐺(𝑋, 0 = 0).                                                                                                      (48) 

With 𝑋 = (𝑆0
𝑀,  𝑆𝐼

𝑀) ∈ 𝑅+
2  representing the uninfected classes, 𝑍 =

(𝐼0
𝑀,  𝐼𝐼

𝑀, 𝐿𝑁 , 𝑎𝑛𝑑 𝐿𝑅) ∈ 𝑅+
4  representing the infected and the infectious classes. 𝐸0 =
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(𝑋 ∗ ,0) denotes the disease- free equilibrium point of the system 𝐸0 =

(𝑆𝑂
𝑀0, 𝐼𝑂

𝑀0, 𝑆𝐼
𝑀0, 𝐼𝐼

𝑀0, 𝐿𝑁
0 , 𝐿𝑅

0 ) = (
𝜌

(1−𝜃1)𝜋
, 0,

𝜌

(1−𝜃2)𝜋
, 0,0,0)}.      (Equation 23)      

According to the Castillo-Chavez stability theorem if the following conditions are 

satisfied in the points given above, then the global asymptotic stability of 𝐸0 is guaranteed. 

The conditions include: 

1. 
𝑑𝑋

𝑑𝑡
= 𝐹(𝑋, 0), 𝑋 ∗ is Globally asymptotically stable.                                                      (49)  

2. 
𝑑𝑍

𝑑𝑡
= 𝐷𝑍𝐺(𝑋, 0)𝑍 − 𝐺̃(𝑋, 𝑍),    𝐺̃(𝑋, 𝑍) ≥ 0,∀(𝑋, 𝑍) ∈ 𝛺 ∈ 𝑅+

6 .                                 (50) 

Theorem 5 

The Disease-free Equilibrium point (𝐸0) is globally asymptotically stable. 

Proof 

We start by dividing the model into subsystems 

𝑋 = (𝑆0
𝑀, 𝑆𝐼

𝑀) , and 𝑍 = (𝐼0
𝑀, 𝐼𝐼

𝑀, 𝐿𝑁 , 𝐿𝑅).                                                                            (51) 

We then generate two vector-valued functions   

 𝐹(𝑋, 𝑍) = (
𝜌 − 𝛽𝑂𝑆𝑂

𝑀 − (1 − 𝜃1)𝜋𝑆𝑂
𝑀

𝜌 − (1 − 𝜃2)𝜋𝑆𝐼
𝑀 − 𝛽𝐼𝑆𝐼

𝑀),                                                                           (52)             

 and  

 𝐺(𝑋, 𝑍) =

(

 
 

𝛽𝑂𝑆𝑂
𝑀 − 𝜃1𝜋𝐼𝑂

𝑀

𝛽𝐼𝑆𝐼
𝑀 − 𝜃2𝜋𝐼𝐼

𝑀

𝜆(𝜋1𝐼𝑂
𝑀 + 𝜋2𝐼𝐼

𝑀) − (𝜔 + 𝜇𝐿 + 𝛿𝑁)𝐿𝑁

(𝜋1𝐼𝑂
𝑀 + 𝜋2𝐼𝐼

𝑀)𝜆 + 𝜔𝐿𝑁 − (𝜇𝐿 + 𝛿𝑅)𝐿𝑅)

 
 

.                                                 (53) 

Evaluating for the reduced system from condition (1),  
𝑑𝑋

𝑑𝑡
= 𝐹(𝑋, 0) to get, 

 
𝑑𝑆𝑂

𝑀

𝑑𝑡
= 𝜌 − (1 − 𝜃1)𝜋𝑆𝑂

𝑀,              
𝑑𝑆𝐼

𝑀

𝑑𝑡
= 𝜌 − (1 − 𝜃2)𝜋𝑆𝐼

𝑀           
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We note that the system has dynamics of an asymptomatic system independent of initial 

conditions in 𝛺. 

We then compute 𝐺(𝑋, 𝑍) = 𝐷𝑍𝐺(𝑋 ∗ ,0)𝑍 − 𝐺̃(𝑋, 𝑍) and prove that 𝐺̃(𝑋, 𝑍) ≥ 0. 

Let 𝐴 = 𝐷𝑍𝐺(𝑋 ∗ ,0) a Jacobian matrix of 𝐺̃(𝑋, 𝑍) taken in 𝑍 = (𝐼0
𝑀,  𝐼𝐼

𝑀, 𝐿𝑁 , 𝐿𝑅) and 

evaluated at (𝑋 ∗ ,0). It is also defined as an M matrix since all the non-diagonal elements 

that are non-negative. 

 𝐴 = (

𝜃1𝜋 0 0 0
0 𝜃2𝜋 0 0

𝜆𝜋1 𝜆𝜋2 −𝜛 0
𝜆𝜋1 𝜆𝜋2 𝜔 −𝜎

)  .                                                                                          (54) 

Evaluating the value of AZ 

 𝐴𝑍 =

(

 
 

𝜃1𝜋𝐼0
𝑀

𝜃2𝜋𝐼𝐼
𝑀

𝜆𝜋1𝐼0
𝑀 + 𝜆𝜋2𝐼𝐼

𝑀 − 𝜛𝐿𝑁

𝜆𝜋1𝐼0
𝑀 + 𝜆𝜋2𝐼𝐼

𝑀 + 𝜔𝐿𝑁 − 𝜎𝐿𝑅)

 
 

.                                                                          (55) 

With the equation 𝐺̃(𝑋, 𝑍) = 𝐴𝑍 − 𝐺(𝑋, 𝑍) ≥ 0, then the value of  

 𝐺̃(𝑋, 𝑍) = (

𝛽0𝑆0
𝑀

𝛽𝐼𝑆𝐼
𝑀

0
0

).                                                                                                                (56)    

Since 𝐺̃(𝑋, 𝑍) ≥ 0 ∀(𝑋, 𝑍) ∈ 𝛺 ∈ 𝑅+
6  then the DFE is proved to be globally 

asymptotically stable. 
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4.5.3 Local stability analysis of Control free Equilibrium point 

Theorem 6 

The control-free equilibrium  (𝐸𝐶) point is Locally asymptotically stable. 

Proof 

Local stability analysis of the control free steady state is achieved by first generating the 

Jacobian matrix 𝐽𝑓(𝐸𝐶)=  evaluated at control free steady-state evaluated in section 4.4, 

𝐽𝑓(𝐸𝐶)=

(

 
 
 

−(1 − 𝜃1)𝜋 − 𝑎0 𝑎1 𝑎1 𝑎1 𝑎2 𝑎3

𝑎0 −𝑎1 − 𝜃1𝜋 −𝑎1 𝑎1 𝑎2 𝑎3

0 0 −(1 − 𝜃2)𝜋 − 𝑎4 0 0 0
0 0 𝑎5 −𝜃2𝜋 0 0
0 𝜆𝜋1 0 𝜆𝜋2 −𝜛 0
0 𝜆𝜋1 0 𝜆𝜋2 𝜔 −𝜎)

 
 
 

 (57) 

Where 𝑎0 =
(𝐿𝑁

𝑐 +∈𝐿𝑅
𝑐 )𝜂0

𝑆𝑂
𝑀𝑐+𝐼𝑂

𝑀𝑐 −
𝑆𝑂

𝑀𝑐(𝐿𝑁
𝑐 +∈𝐿𝑅

𝑐 )𝜂0

(𝑆𝑂
𝑀𝑐+𝐼𝑂

𝑀𝑐)
2 ,    𝑎1 =

𝑆𝑂
𝑀𝑐(𝐿𝑁

𝑐 +∈𝐿𝑅
𝑐 )𝜂0

(𝑆𝑂
𝑀𝑐+𝐼𝑂

𝑀𝑐)
2  ,  𝑎2 =

𝜂0𝑆𝑂
𝑀𝑐

𝑆𝑂
𝑀𝑐+𝐼𝑂

𝑀𝑐, 

 𝑎3 =
𝜖𝜂0𝑆𝑂

𝑀𝑐

𝑆𝑂
𝑀𝑐+𝐼𝑂

𝑀𝑐  , 𝑎4 =
(𝐿𝑁

𝑐 +∈𝐿𝑅
𝑐 )𝜂0

𝑆𝑂
𝑀𝑐+𝐼𝑂

𝑀𝑐  , and  𝑎5 =
(𝐿𝑁

𝑐 +∈𝐿𝑅
𝑐 )𝜂1

𝑆𝑂
𝑀𝑐+𝐼𝑂

𝑀𝑐 , with 𝐿𝑁
𝐶 , 𝐿𝑅

𝐶 , 𝑆𝑂
𝑀𝐶  , 𝐼𝑂

𝑀𝐶 as shown 

in section 4.4. 

Using Wolfram Mathematica, the eigen values are found to be, 

𝛾1 = 𝛾2 = 𝛾3 = 𝛾4=(𝜋𝜛𝜎𝑎1)
4

+ ((𝜋 + 𝜛 + 𝜎 + 𝑎0 + 𝑎1) − 𝜋𝜆𝜎𝑎2𝜋1 − 2𝜆𝜎𝑎0𝑎2𝜋1 − 𝜋𝜆𝜛𝑎3𝜋1

− 𝜋𝜆𝜔𝑎3𝜋1 − 2𝜆𝜛𝑎0𝑎3𝜋1 − 2𝜆𝜔𝑎0𝑎3𝜋1 + 𝜋2𝜛𝜎𝜃1 + 𝜋𝜛𝜎𝑎0𝜃1

− 𝜋𝜛𝜎𝑎1𝜃1 + 𝜋𝜆𝜎𝑎2𝜋1𝜃1 + 𝜋𝜆𝜛𝑎3𝜋1𝜃1 + 𝜋𝜆𝜔𝑎3𝜋1𝜃1 − 𝜋2𝜛𝜎𝜃1
2)3

+ (𝜋𝜛 + 𝜋𝜎 + 𝜛𝜎 + 𝜛𝑎0 + 𝜎𝑎0 + 𝜋𝑎1 + 𝜛𝑎1 + 𝜎𝑎1 − 𝜆𝑎2𝜋1

− 𝜆𝑎3𝜋1 + 𝜋2𝜃1 + 𝜋𝑎0𝜃1 − 𝜋𝑎1𝜃1 − 𝜋2𝜃1
2)2

+ (𝜋𝜛𝜎 + 𝜛𝜎𝑎0 + 𝜋𝜛𝑎1 + 𝜋𝜎𝑎1 + 𝜛𝜎𝑎1 − 𝜋𝜆𝑎2𝜋1 − 𝜆𝜎𝑎2𝜋1

− 2𝜆𝑎0𝑎2𝜋1 − 𝜋𝜆𝑎3𝜋1 − 𝜆𝜛𝑎3𝜋1 − 𝜆𝜔𝑎3𝜋1 − 2𝜆𝑎0𝑎3𝜋1 + 𝜋2𝜛𝜃1

+ 𝜋2𝜎𝜃1 + 𝜋𝜛𝑎0𝜃1 + 𝜋𝜎𝑎0𝜃1 − 𝜋𝜛𝑎1𝜃1 − 𝜋𝜎𝑎1𝜃1 + 𝜋𝜆𝑎2𝜋1𝜃1

+ 𝜋𝜆𝑎3𝜋1𝜃1 − 𝜋2𝜛𝜃1
2 − 𝜋2𝜎𝜃1

2), 
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 𝛾5 = −𝜋𝜃2 , and    𝛾6 = −𝜋 − 𝑎4 + 𝜋𝜃2 .                                                                            (58) 

Through back substitution all the eigen values are negative and thus the control free 

equilibrium point is evaluated to be stable.  

4.5.4 Global stability analysis of Control free equilibrium (𝐄𝐂) point. 

If a Lyapunov function to a linearized nonlinear system is obtained and exists, then that 

shows that the model system is asymptotically stable (Al-Sheikh, 2012). 

Theorem 7 

The Control free equilibrium point is globally asymptotically stable: (i) If the control free 

equilibrium is feasible and (ii) If the equilibrium point is a locally asymptotically stable 

solution. 

Proof 

We consider a Lyapunov method for stability analysis an approach adopted by (Maini & 

Korobeinikov, 2004). We start by constructing a Lyapunov function  

𝐿 = ∑𝑏𝑖 (𝑞𝑖 − 𝑞𝑖
𝐶 𝑙𝑛 𝑞𝑖).                                                                                                        (59)                                                                               

With 𝑏𝑖 representing a constant selected such that 𝑏𝑖 > 0, 𝑞𝑖 representing the 𝑖𝑡ℎ 

compartments classes, 𝑎𝑛𝑑 𝑞𝑖
𝑐 representing the control free equilibrium point of the 𝑖𝑡ℎ 

compartmental classes. 

Expanding the Lyapunov function and substituting the compartments 

𝐿 = 𝑏1(𝑆0
𝑀 − 𝑆0

𝑀𝑐 𝑙𝑛 𝑆𝑂
𝑀) + 𝑏2(𝐼0

𝑀 − 𝐼0
𝑀𝑐 𝑙𝑛 𝐼𝑂

𝑀) + 𝑏3(𝑆𝐼
𝑀 − 𝑆𝐼

𝑀𝑐 𝑙𝑛 𝑆𝐼
𝑀) + 𝑏4(𝐼𝐼

𝑀 −

𝐼𝐼
𝑀𝑐 𝑙𝑛 𝐼𝐼

𝑀) + 𝑏5(𝐿𝑁 − 𝐿𝑁
𝑐 𝑙𝑛 𝐿𝑁) + 𝑏6(𝐿𝑅 − 𝐿𝑅

𝑐 𝑙𝑛 𝐿𝑅).                                                     (60)                                                                                        

We evaluate the derivative of the above equation (60) with respect to time to get, 

 
𝑑𝐿

𝑑𝑡
= 𝑏1 (1 −

𝑆0
𝑀𝑐

𝑆𝑂
𝑀 )

𝑑𝑆𝑂
𝑀

𝑑𝑡
+ 𝑏2 (1 −

𝐼0
𝑀𝑐

𝐼0
𝑀 )

𝑑𝐼0
𝑀

𝑑𝑡
+ 𝑏3 (1 −

𝑆𝐼
𝑀𝑐

𝑆𝐼
𝑀 )

𝑑𝑆𝐼
𝑀

𝑑𝑡
+ 𝑏4 (1 −

𝐼𝐼
𝑀𝑐

𝐼𝐼
𝑀 )

𝑑𝐼𝐼
𝑀

𝑑𝑡
+

𝑏5 (1 −
𝐿𝑁
𝑐

𝐿𝑁
)

𝑑𝐿𝑁

𝑑𝑡
+ 𝑏6 (1 −

𝐿𝑅
𝑐

𝐿𝑅
)

𝑑𝐿𝑅

𝑑𝑡
 .                                                                                      (61)                                                                                                                                             
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Where: 𝑆0
𝑀(𝑡) = 𝑆0

𝑀𝑐(𝑡), 𝐼0
𝑀(𝑡) = 𝐼0

𝑀𝑐(𝑡), 𝑆𝐼
𝑀(𝑡) = 𝑆𝐼

𝑀𝑐(𝑡), 𝐼𝐼
𝑀(𝑡) = 𝐼𝐼

𝑀𝑐(𝑡), 𝐿𝑁(𝑡) =

𝐿𝑁
𝑐 (𝑡), 𝐿𝑅(𝑡) = 𝐿𝑅

𝑐 (𝑡). 

Substituting the values of  
𝑑𝑆𝑂

𝑀

𝑑𝑡
,
𝑑𝐼0

𝑀

𝑑𝑡
,
𝑑𝑆𝐼

𝑀

𝑑𝑡
,
𝑑𝐼𝐼

𝑀

𝑑𝑡
,
𝑑𝐿𝑁

𝑑𝑡
,
𝑑𝐿𝑅

𝑑𝑡
  with the model values to get 

𝑑𝐿

𝑑𝑡
= 𝑏1 (1 −

𝑆0
𝑀𝑐

𝑆𝑂
𝑀 ) [𝜌 − 𝛽𝑂𝑆𝑂

𝑀 − (1 − 𝜃1)𝜋𝑆𝑂
𝑀] + 𝑏2 (1 −

𝐼0
𝑀𝑐

𝐼0
𝑀 ) [𝛽𝑂𝑆𝑂

𝑀 − 𝜃1𝜋𝐼𝑂
𝑀]

+ 𝑏3 (1 −
𝑆𝐼

𝑀𝑐

𝑆𝐼
𝑀 ) [𝜌 − (1 − 𝜃2)𝜋𝑆𝐼

𝑀 − 𝛽𝐼𝑆𝐼
𝑀]

+ 𝑏4 (1 −
𝐼𝐼
𝑀𝑐

𝐼𝐼
𝑀 ) [𝛽𝐼𝑆𝐼

𝑀 − 𝜃2𝜋𝐼𝐼
𝑀]

+ 𝑏5 (1 −
𝐿𝑁
𝑐

𝐿𝑁
) [𝜆(𝑒𝑁 + 𝜋1𝐼𝑂

𝑀 + 𝜋2𝐼𝐼
𝑀) − (𝜔 + 𝜇𝐿 + 𝛿𝑁)𝐿𝑁]

+ 𝑏6 (1 −
𝐿𝑅
𝑐

𝐿𝑅
) [((1 − 𝑒𝑁) + 𝜋1𝐼𝑂

𝑀 + 𝜋2𝐼𝐼
𝑀)𝜆 + 𝜔𝐿𝑁

− (𝜇𝐿 + 𝛿𝑅)𝐿𝑅].                                                                                              (62) 

As shown in section 4.2 the model equations are positively invariant, hence 

𝑑𝐿

𝑑𝑡
≤ 0 ∀ 𝑆0

𝑀(𝑡), 𝐼0
𝑀(𝑡), 𝑆𝐼

𝑀(𝑡), 𝐼𝐼
𝑀(𝑡), 𝐿𝑁(𝑡), 𝐿𝑅(𝑡) > 0.                                                    (63)   

also  

 
𝑑𝐿

𝑑𝑡
= 0   𝑖𝑓 𝑆0

𝑀(𝑡) = 𝑆0
𝑀𝑐(𝑡), 𝐼0

𝑀(𝑡) = 𝐼0
𝑀𝑐(𝑡), 𝑆𝐼

𝑀(𝑡) = 𝑆𝐼
𝑀𝑐(𝑡), 𝐼𝐼

𝑀(𝑡) =

𝐼𝐼
𝑀𝑐(𝑡), 𝐿𝑁(𝑡) = 𝐿𝑁

𝑐 (𝑡), 𝐿𝑅(𝑡) = 𝐿𝑅
𝑐 (𝑡) .                                                                                (64) 

Thus, in the set {𝑆0
𝑀𝑐(𝑡),  𝐼0

𝑀𝑐(𝑡),  𝑆𝐼
𝑀𝑐(𝑡),  𝐼𝐼

𝑀𝑐(𝑡),  𝐿𝑁
𝑐 (𝑡),  𝐿𝑅

𝑐 (𝑡) 𝜖 𝛺𝜖𝑅+
6} the largest 

invariant set where 
𝑑𝐿

𝑑𝑡
= 0 is the singleton (𝐸𝐶), that is, the control free equilibrium point. 

By Lasalle’s invariant principle (Arsie & Ebenbauer, 2009),  (𝐸𝐶 ) is globally 

asymptotically stable in the set 𝛺 if 𝑅0 ≤ 1  

Otherwise, is unstable. 
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4.5.5 Global stability analysis of endemic equilibrium (𝑬∗) point.  

Theorem 8  

For the Endemic equilibrium point to be globally stable, then (i) the endemic equilibrium 

point must be feasible, and (ii) the endemic equilibrium point must be locally stable.  

Proof 

We first assume that the Endemic equilibrium point is locally asymptotically stable since 

linearization method evaluated at the equilibrium point proves to be mathematically 

complicated. 

Applying the Lyapunov method as used by (Maini & Korobeinikov, 2004) and 

constructing the appropriate Lyapunov function as 

𝐿 = ∑𝑎𝑖 (𝑥𝑖 − 𝑥𝑖
∗ 𝑙𝑛 𝑥𝑖).                                                                                                           (65)                                                                                 

Where 𝑎𝑖 represents a constant selected such that 𝑏𝑖 > 0, 𝑥𝑖 represent the 𝑖𝑡ℎ 

compartments classes, and 𝑥𝑖
∗ represents the disease endemic equilibrium point( 𝐸∗) of 

the 𝑖𝑡ℎ compartment classes. 

Expanding the Lyapunov function and substituting the compartments 

 𝐿 = 𝑎1(𝑆0
𝑀 − 𝑆0

𝑀∗ 𝑙𝑛 𝑆𝑂
𝑀) + 𝑎2(𝐼0

𝑀 − 𝐼0
𝑀∗ 𝑙𝑛 𝐼𝑂

𝑀) + 𝑎3(𝑆𝐼
𝑀 − 𝑆𝐼

𝑀∗ 𝑙𝑛 𝑆𝐼
𝑀) + 𝑎4(𝐼𝐼

𝑀 −

𝐼𝐼
𝑀∗ 𝑙𝑛 𝐼𝐼

𝑀) + 𝑎5(𝐿𝑁 − 𝐿𝑁
∗ 𝑙𝑛 𝐿𝑁) + 𝑎6(𝐿𝑅 − 𝐿𝑅

∗ 𝑙𝑛 𝐿𝑅).                                                    (66)                                                                              

Differentiating the above equation (66) with respect to time to get, 

 
𝑑𝐿

𝑑𝑡
= 𝑎1 (1 −

𝑆0
𝑀∗

𝑆𝑂
𝑀 )

𝑑𝑆𝑂
𝑀

𝑑𝑡
+ 𝑎2 (1 −

𝐼0
𝑀∗

𝐼0
𝑀 )

𝑑𝐼0
𝑀

𝑑𝑡
+ 𝑎3 (1 −

𝑆𝐼
𝑀∗

𝑆𝐼
𝑀 )

𝑑𝑆𝐼
𝑀

𝑑𝑡
+ 𝑎4 (1 −

𝐼𝐼
𝑀∗

𝐼𝐼
𝑀 )

𝑑𝐼𝐼
𝑀

𝑑𝑡
+

𝑎5 (1 −
𝐿𝑁
∗

𝐿𝑁
)

𝑑𝐿𝑁

𝑑𝑡
+ 𝑎6 (1 −

𝐿𝑅
∗

𝐿𝑅
)

𝑑𝐿𝑅

𝑑𝑡
 .                                                                                       (67)                                                                                                  

Which is equivalent to 
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𝑑𝐿

𝑑𝑡
= 𝑎1 (1 −

𝑆0
𝑀∗

𝑆𝑂
𝑀 ) [𝜌 − 𝛽𝑂𝑆𝑂

𝑀 − (1 − 𝜃1)𝜋𝑆𝑂
𝑀] + 𝑎2 (1 −

𝐼0
𝑀∗

𝐼0
𝑀 ) [𝛽𝑂𝑆𝑂

𝑀 − 𝜃1𝜋𝐼𝑂
𝑀] +

 𝑎3 (1 −
𝑆𝐼

𝑀∗

𝑆𝐼
𝑀 ) [𝜌 − (1 − 𝜃2)𝜋𝑆𝐼

𝑀 − 𝛽𝐼𝑆𝐼
𝑀] + 𝑎4 (1 −

𝐼𝐼
𝑀∗

𝐼𝐼
𝑀 ) [𝛽𝐼𝑆𝐼

𝑀 − 𝜃2𝜋𝐼𝐼
𝑀] + 𝑎5 (1 −

𝐿𝑁
∗

𝐿𝑁
) [𝜆(𝑒𝑁 + 𝜋1𝐼𝑂

𝑀 + 𝜋2𝐼𝐼
𝑀) − (𝜔 + 𝜇𝐿 + 𝛿𝑁)𝐿𝑁] + 𝑎6 (1 −

𝐿𝑅
∗

𝐿𝑅
) [((1 − 𝑒𝑁) + 𝜋1𝐼𝑂

𝑀 +

𝜋2𝐼𝐼
𝑀)𝜆 + 𝜔𝐿𝑁 − (𝜇𝐿 +

𝛿𝑅)𝐿𝑅] .                                                                                                                                                                                                                                                              

Where: 𝑆0
𝑀(𝑡) = 𝑆0

𝑀∗(𝑡), 𝐼0
𝑀(𝑡) = 𝐼0

𝑀∗(𝑡), 𝑆𝐼
𝑀(𝑡) = 𝑆𝐼

𝑀∗(𝑡), 𝐼𝐼
𝑀(𝑡) = 𝐼𝐼

𝑀∗(𝑡), 𝐿𝑁(𝑡) =

𝐿𝑁
∗ (𝑡), 𝐿𝑅(𝑡) = 𝐿𝑅

∗ (𝑡). 

As in section (4.2), the model equations are positively invariant, hence 

𝑑𝐿

𝑑𝑡
≤ 0 ∀ 𝑆0

𝑀(𝑡), 𝐼0
𝑀(𝑡), 𝑆𝐼

𝑀(𝑡), 𝐼𝐼
𝑀(𝑡), 𝐿𝑁(𝑡), 𝐿𝑅(𝑡) > 0.                                                    (68)    

and  

 
𝑑𝐿

𝑑𝑡
= 0   𝑖𝑓 𝑆0

𝑀(𝑡) = 𝑆0
𝑀∗(𝑡), 𝐼0

𝑀(𝑡) = 𝐼0
𝑀∗(𝑡), 𝑆𝐼

𝑀(𝑡) = 𝑆𝐼
𝑀∗(𝑡), 𝐼𝐼

𝑀(𝑡) = 𝐼𝐼
𝑀∗(𝑡), 𝐿𝑁(𝑡) =

𝐿𝑁
∗ (𝑡), 𝐿𝑅(𝑡) = 𝐿𝑅

∗ (𝑡).                                                                                                               (69) 

Thus, in the set {𝑆0
𝑀∗(𝑡),  𝐼0

𝑀∗(𝑡),  𝑆𝐼
𝑀∗(𝑡),  𝐼𝐼

𝑀∗(𝑡),  𝐿𝑁
∗ (𝑡),  𝐿𝑅

∗ (𝑡) 𝜖 𝛺𝜖𝑅+
6} the largest 

invariant set such that 
𝑑𝐿

𝑑𝑡
= 0 is the Singleton (𝐸∗), that is, the disease endemic 

equilibrium point. By Lasalle’s invariant principle (Arsie & Ebenbauer, 2009), (𝐸∗) is 

globally asymptotically stable in the set 𝛺 if 𝑅0 ≤ 1 the interior of 𝛺, otherwise unstable. 

4.6 Sensitivity Analysis of 𝑹𝟎. 

Sensitivity analysis of  𝑅0 helps identify the key parameters that significantly affect the 

FAW larvae-maize interaction model. This helps determine the key parameters to consider 

in the control strategies against the FAW larvae infestation into the maize population by 

managing the basic reproduction number and the force of infection. We follow a 

sensitivity method as conducted by (Alemneh et al., 2019) and (Garcia et al., 2019). 
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Definition 4.6.0 The normalized forward sensitivity index of a variable, 𝑅0, depending 

differentially on parameter  𝑃` is defined by an equation  

𝛼𝑃`
𝑅0 =

𝜕𝑅0

𝜕𝑃`
.    

𝑃`

𝑅0
                                                                                                                                       (70) 

Where 𝑅0 represents the Basic reproduction number  

           𝑃` represents all the main parameters. 

In our study, we have the value of 𝑅0 given as,  

𝑅0 =
𝜆(𝜀𝜛 + 𝜎 + 𝜀𝜔)(𝜋2𝜃1𝜂̃𝐼 + 𝜋1𝜃2𝜂̃0)

𝜋𝜛𝜎𝜃1𝜃2
  .   

The sensitivity index of 𝑅0 to 𝜆 is  

          𝛼𝜆
𝑅0 =

𝜕𝑅0

𝜕𝜆
   .  

𝜆

𝑅0 
 ,                                                                                                                           (71) 

=
(𝜀𝜛 + 𝜎 + 𝜀𝜔)(𝜋2𝜃1𝜂̃𝐼

+ 𝜋1𝜃2𝜂̃0
)

𝜋𝜛𝜎𝜃1𝜃2
  .  

𝜆

𝜆(𝜀𝜛 + 𝜎 + 𝜀𝜔)(𝜋2𝜃1𝜂̃𝐼 + 𝜋1𝜃2𝜂̃0)

𝜋𝜛𝜎𝜃1𝜃2

 = 1        (72) 

A similar procedure is used to calculate the sensitivity indices for the other parameters 

around the basic reproduction number; the results are shown in the table below. 

Table 4: Sensitivity Indices 

                Parameter  Sensitivity index 

𝜆 1 

𝜎 -0.5 

𝜛 -0.5 

𝜀 0.5 

𝜔 0.2 
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𝜋 -0.5 

𝜋1 0.5 

𝜋2 0.4 

𝜃1 -0.5 

𝜃2 -0.4 

 

4.6.1 Interpreting the sensitivity Indices 

Sensitivity indices for the basic reproduction number 𝑅0 presented in the table above show 

positive and negative values for the parameter values. A positive sensitivity index denotes 

a direct linkage between the parameter and the basic reproduction number while a negative 

sensitivity index denotes an inverse linkage between the parameter and the basic 

reproduction number. From the table, (𝜆, 𝜀, 𝜔, 𝜋1, 𝑎𝑛𝑑 𝜋2) have positive sensitivity 

indices. This means that the parameter values have a great impact on spreading the disease 

among the maize population upon an increase in their parameter values. This is because 

the value of  𝑅0 will tend to increase by increasing the parameter values, further increasing 

the number of secondary infections in the susceptible maize population. 

The parameter (𝜎,𝜛, 𝜃1, 𝜃2) have negative sensitivity indices. This means that the value 

of 𝑅0 decreases when their values are increased. This results in a decrease in the rate of 

infection, lowering the secondary infections in the susceptible maize population. The 

value of 𝜆 being equal to 1 means a unit increase in 𝜆 results in a unit increase in the value 

of 𝑅0 and vice versa. 

4.7 Numerical analysis 

4.7.1 Parameter estimation. 

Numerical analysis of the model is conducted using a Matlab inbuilt solver based on 

Runge-Kutta order 5 with parameter values cited in table 5 as obtained from published 

studies together with a few estimated values. The initial value states are used as 𝑆𝑂
𝑀(0) =

1000,  𝐼𝑂
𝑀(0) = 0,  𝑆𝐼

𝑀(0) = 1000,  𝐼𝐼
𝑀(0) = 0 , 𝐿𝑁(0) = 100,  𝐿𝑅(0) = 10 as shown 
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by similar studies on Fall Armyworm- Maize interaction (Daudi et al., 2021), (Alemneh 

et al., 2019) and (Jamieson, 2019). The simulations are conducted at a time range of 

between 0 to 60 days which is the vegetative stage of the maize population and the most 

interactive phase with the FAW population. The resulted simulation graphs are presented 

in the figures 2 to 11 below. 

Table 5: Parameter values, ranges, and references. 

Parameter Description Parameter value Source/Reference 

𝜃1 The harvesting rate of organic 

maize population 𝑁𝑂
𝑀(t) 

0.015  (Alemneh et al., 

2019)  

𝐾 

 

Maximum plant carrying 

capacity of the two maize 

sections 

1000 plants (Alemneh et al., 

2019)  

𝜃2 The harvesting rate of 

insecticidal sprayed maize 

population 𝑁𝐼
𝑀(𝑡) 

0.005  Estimated 

𝑒𝑁  The natural recruitment rate of 

larvae from the naturally 

occurring FAW population. 

0.98 (De Groote et al., 

2020) 

𝜔 The rate at which normal larvae 

progress into resistant larvae 

population 

0.45 (Daudi et al., 

2021)  

𝜌 The natural recruitment rate of 

the maize biomass into the 

maize population. 

50Kg per plant (Daudi et al., 

2021)  

𝜇𝐿  Total population decrease rate 

of the larvae  

0.077 Calculated 

𝜇2 Progression rate into the pupa 

FAW life cycle. 

0.071  (De Groote et al., 

2020) 

 𝜇1 The natural death rate of the 

FAW larvae  

0.0071 (De Groote et al., 

2020)  
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𝛿𝑅  The insecticidal induced death 

rates on the resistant larvae. 

0.35  (Jamieson, 2019)  

𝛿𝑁  The insecticidal-induced death 

rates in the normal larvae 

0.52  (Jamieson, 2019) 

𝜂0  Infection factor 0.3922 Estimated 

𝜂1 Infection factor 0.1087 Estimated 

𝛽0 The rate of infection in the 

organic maize population 

0.0202 Calculated 

𝛽1 The rate of infection in the 

insecticidal maize population  

0.0056 Calculated  

𝜆 The survival rate of the larvae 

from the egg stage of the FAW 

population 

0.75  (Daudi et al., 

2021) 

 

𝜋 The lost maize biomass in the 

𝑁𝑀(𝑡) class was due to a 

caterpillar attack. 

0.9  (Jamieson, 2019)  

𝜋1 The maize biomass from the 

𝐼𝑂
𝑀(𝑡) class contributing 

directly to the larvae increased 

natural recruitment rate. 

0.2 (Jamieson, 2019)  

𝜋2 The maize biomass from the  

𝐼𝐼
𝑀(𝑡) class contributing 

directly to the larvae increased 

natural recruitment rate. 

0.18 Estimated 
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4.7.2 Simulation results. 

 

Figure 2: Population dynamics of organic maize interacting with the normal and 

resistant larvae. 

 

Figure 3: Population dynamics of insecticidal maize interacting with the normal and 

resistant larvae. 

In figure 2 and figure 3 above, the susceptible maize populations {𝑆𝑂
𝑀(𝑡),  𝑆𝐼

𝑀(𝑡)} increase 

exponentially with time until they reach the endemic equilibrium point. The curve for the 
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organic infected maize in (figure 2) is observed to be higher than the curve for the infected 

insecticidal maize population in (figure 3). This is the effect of uncontrolled FAW larvae- 

organic maize interactions which subsequently leads to a high force of infection (𝛽0) 

resulting to a higher infected organic maize population.  

 

Figure 4: Population dynamics of infected organic maize at distinct values of 𝛽0. 

 

Figure 5: Population dynamics of infected insecticidal maize at distinct values of 𝛽1. 
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In figure 4 above, when β0 is decreased by 50% the infected organic maize population 

decreases exponentially with time. This is due to the direct linkage between the force of 

infection and the basic reproduction number. At a higher value of  β0, the infected organic 

maize population increases exponentially. Similar observations are made in figure 5 

however, the infected insecticidal maize population occurs in lower rates as compared to 

the organic section. This is due to the lower values of β1 as compared to β0. 

 

Figure 6: Population dynamics of normal larvae at distinct values of  𝜆. 
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Figure 7: Population dynamics of resistant larvae at distinct values of  𝜆. 

According to figure 1 of the model flow chart, λ represents the survival rate for the FAW 

larvae. From figure 6 and figure 7, reducing the value of λ to lower values than the baseline 

value 𝜆 = 0.75 subsequently reduces the population of the normal and the resistant larvae. 

Increasing the value of λ results to an increase in the larvae populations. This 

subsequentially results to an increase in the maize-FAW interactions and thus higher 

infection rates in the maize populations. Thus, a direct effect on the force of infection in 

the maize population. To reduce the infection rates in the model, we need to lower the 

values of λ. 



52 
 

 

Figure 8: Population dynamics of resistant larvae at distinct values of 𝛿𝑅. 

 

 

Figure 9: Population dynamics of normal larvae at distinct values of 𝛿𝑁 . 

𝛿𝑅 and 𝛿𝑁 denote the insecticidal-induced death rate on the resistant and normal larvae 

respectively. In figure 8 and figure 9, increasing the values of 𝛿𝑅 and 𝛿𝑁 reduces the 

population of the resistant and the normal larvae. This in turn reduces the infection rate 

leading to a lower basic reproduction number. We also observe that the resistant larvae 
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are large in numbers as compared to normal larvae which pose a greater risk in the 

insecticides control measures. 

 

Figure 10: Population dynamics of normal larvae at distinct values of 𝜔. 

 

Figure 11: Population dynamics of resistance larvae at distinct values of 𝜔. 

From figure 10 and figure 11 above, 𝜔, represents the rate at which the normal larvae 

progress into resistant larvae after contact with insecticidal sprays. At higher values of 𝜔 

more normal larvae which are easy to eradicate from the model population by insecticides, 
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progress into resistant larvae. This subsequently reduces the normal larvae population and 

increases the resistant larvae population.  
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CHAPTER FIVE 

DISCUSSION, CONCLUSION, AND RECOMMENDATION 

5.1 Discussion  

This study developed and analyzed a deterministic eco-epidemiological model on maize- 

FAW interaction in presence of insecticides and resistance factors. The model was proved 

to be uniformly bounded and positively invariant. Three equilibrium points, that is, the 

disease/larvae free, control free, and endemic equilibrium points were established and 

evaluated to be locally and globally asymptotically stable at 𝑅0 ≤ 1. Further, an 

expression for the basic reproduction number 𝑅0 and its sensitivity analysis were 

conducted. The results showed that an increase on 𝜔, 𝜆, 𝛽𝑂 , 𝛽𝐼 and a decrease on  𝛿𝑅 , 𝛿𝑁 

greatly increased the FAW larvae interaction and population dynamics and hence the 

spread of the disease to the susceptible maize population. Through numerical simulation, 

graphical results of the FAW-maize interaction and population dynamics are presented by 

applying parameter values obtained from the literature and cited accordingly. 

The analysis of 𝑅0 in host-pest (Maize-FAW) interaction model helps determine how 

effective the insecticides control measures against the FAW larvae are and how and when 

to effectively use the control measure to reduce the value of 𝑅0 to a value of less than one 

(Daudi et al., 2022). Increasing the forces of infection (𝛽0, 𝛽1) resulted to an increase in 

number of infected maize populations while reducing the infection forces resulted to a 

decrease in the number of infected maize populations in both the organic and insecticidal 

sections. This was attributed to the direct impact of the force of infection to the basic 

reproduction number. The insecticides control measures used to control FAW-maize 

interactions in the insecticidal maize section ensured a reduced contact rate and thus the 

number of resulting secondary infections at any time t were lower as compared to the 

organic uncontrolled FAW-maize interactions. 

𝜔 is a parameter value used in the model to represent a constant rate at which the normal 

larvae progress into resistant larvae after insecticides spraying.  When insecticides are 

used to control the FAW larvae population, a few mutants in the population tolerate the 

chemical insecticides better while the normal population succumbs to them (Charaabi et 
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al., 2018). Resistance 𝜔 increased the infection rates by increasing the FAW larvae 

survival rate 𝜆 and reducing the insecticidal efficacy by lowering the larvae insecticidal-

induced death rates 𝛿𝑅 and 𝛿𝑁. However, while resistance affects both the organic and the 

insecticidal controlled maize sections, the FAW-maize interactions and thus the infection 

rates are lower in the controlled insecticidal sections as compared to the organic 

uncontrolled section. 

5.2 Conclusion and Recommendation 

The developed and analyzed deterministic maize- FAW interaction model showed that the 

FAW survival rate 𝜆, resistance formation 𝜔, and the insecticidal induced death rates 𝛿𝑅 

and 𝛿𝑁 are very essential in controlling both the normal and the resistant FAW larvae. 

Control intervention aimed at reducing the infection rate in organic and insecticidal maize 

populations should aim at reducing these parameter factors. This is by using high-efficacy 

insecticides resulting in higher FAW larvae death rates (𝛿𝑅, 𝛿𝑁) thus reducing the FAW 

survival rate, 𝜆. The sensitivity analysis of 𝑅0 showed that the FAW survival rate 𝜆 

significantly affects the FAW- maize interactions. This informs both the organic and the 

inorganic farmers on the importance of using chemical control methods that are highly 

effective in reducing the FAW survival rate 𝜆.  

Also, various integrated FAW-maize management approaches could be adopted where 

several pest control methods are used together since no control method has been reported 

to work best in isolation. African countries should conduct proper civic education on pest 

control methods, FAW-maize interaction patterns, resistance formation in insecticides use 

to ensure environmental conservation and minimize pest resistance formation. This is due 

to the FAW unique characteristics of high migration, mutation, and reproduction which 

makes its control a bit expensive and difficult. However, the findings from this study are 

not exhaustive. In future studies, we will consider developing an optimal larvae survival 

control theory with resistance factors to achieve a profitable FAW larvae control strategy. 
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