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Abstract 
 
Most researchers consider the action of projective general group on the cosets of its maximal subgroups 
leaving out non-maximal subgroups. In this paper, we consider the action of ���(2, �) centralizer of an 
elliptic element which is a non maximal subgroup ����. In particular, we determine the subdegrees, rank and 
properties of the suborbital graphs of the action. We achieve this through the application of the action of a 
group by conjugation. We have proved that the rank is � and the subdegrees are [1][�] and   [� + 1][���].   
 

 
Keywords: Rank; subdegrees; centralizer; suborbital graphs. 
 

1 Introduction 
 
Let a group � act transitively on a set � . The orbits of the stabilizer ��  of a point � ∈ � are called suborbits of 
� on � . The number �(�) of these suborbits is known as the rank of � on �  and the suborbits length is known 
as the subgegrees of � on � . Rank and subdegrees are independent of the � ∈ �  chosen. Any group �  acts 
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transitively on the set of right cosets of any of its subgroup. In this paper the set �  is the set of the right cosets of 
� = ����. 

 

2 Preliminary Results 
  

2.1 Background information on subgroup structure of � = ���(�, �) or ���(�, �) 
 
The general linear group, ��(2, �) is a group of all 2 × 2 invertible matrices over a finite field, ��(�), where 
� = ��  for some prime � and � ∈ ℤ�. A subgroup, ��(2, �) of ��(2, �) consisting of all unimodular matrices is 
called a special linear group. The quotient groups of ��(2, �)  and ��(2, �) by their centres are called the 
projective general linear group ���(2, �) and projective special linear group ���(2, �) respectively. The group 
���(2, �) can be viewed as a group of linear fractional transformations of the form;  
 

� ↦
����

����
,         (1) 

 
where �, �, �, � ∈ ��(�) and �� − ��≠ 0. (See [1] Sec 239)  
 
The group ���(2, �) can be viewed as a group of linear fractional transformations of the form in Expression 1 

with �� − ��= 1. (See [1]). The order of ���(2, �) is �(�� − 1) and that of ���(2, �) is 
�(����)

�
, where � is 

the gcd of 2 and � − 1. It follows that, if � is even, then ���(2, �) and ���(2, �) have the same order and since 
���(2, �)  ���(2, �), the two are isomorphic. 
 
According to [1], � acts doubly transitively on the projective line ��(1, �) = ��(�) ∪ {∞ }. Each non-identity 
element fixes either 0, 1 or 2 elements on ��(1, �). Therefore the set of non-identity elements in � is partitioned 
into: ��, those elements that do not fix any element on ��(1, �); ��, those elements that fix only one element on 
��(1, �) and ��, those elements that fix only 2 elements on ��(1, �). The elements in the sets ��, �� and �� are 
known as elliptic, parabolic and hyperbolic elements of � respectively. (See [2] Chap 8) 
 
Let � ∈ �� with |�|≠ 2. Then ��(�) is a cyclic subgroup ���� for � = ���(2, �) and ����

�

 for � = ���(2, �). 

These subgroups consist of identity and all hyperbolic elements of � fixing the same elements on ��(1, �) as �. 
There are are �(� + 1) such cyclic subgroups in � which only intersect pairwise at identity. It follows that �� 

has �(� + 1)(� − 2) and �(� + 1)(
���

�
− 1) for ���(2, �) and ���(2, �) respectively. The normalizer of ���� 

in ���(2, �) is a dihedral subgroup ��(���) while that of ����

�

 in ���(2, �) is a dihedral subgroup �
�
���

�

. If 

� ∈ ��  with |�|= 2 , then ��(�)  is a dihedral subgroup ��(���)  and �
�
���

�

 for ���(2, �)  and ���(2, �) 

respectively. (See [1] Sec 242)  
 
If � ∈ �� , then ��(�)  is an Elementally Abelian group ��  of order �  consisting of identity and parabolic 

elements fixing the same element on ��(1, �)  as � . |��(1, �)|= � + 1  and therefore �  has � + 1  such 
Elementally Abelian groups which only intersect pairwise at identity. Therefore |��|= �� − 1. It follows that all 
parabolic elements in ���(2, �) are conjugate in ���(2, �) but exists in two conjugacy classes in ���(2, �) of 

length 
����

�
 each if � is odd. The normalizer of �� in � is a subgroup of the form �� ⋉ ���� and �� ⋉ ����

�

 for 

���(2, �) and ���(2, �) respectively. The subgroup ��(��) consists ��  and hyperbolic elements in �  whose 

one of the fixed point on ��(1, �) is the same element fixed by �� . (See [1] Sec 241) 
 
Let � ∈ �� with |�|≠ 2. Then ��(�) is a cyclic subgroup ���� for � = ���(2, �) and ����

�

 for � = ���(2, �). 

These subgroups consist of identity and some elliptic elements of �. The normalizer of ���� in ���(2, �) is a 

dihedral subgroup ��(���)  while that of ����

�

 in ���(2, �) is a dihedral subgroup �
�
���

�

. There are �(� − 1) 

such cyclic groups in � which only intersect pairwise at identity. It follows that �� has ��(� − 1) and �(� −

1)(
���

�
− 1)  for ���(2, �)  and ���(2, �)  respectively. If � ∈ ��  with |�|= 2 , then ��(�)  is a dihedral 

subgroup ��(���) and �
�
���

�

 for ���(2, �) and ���(2, �) respectively. (See [1] Sec 243) 
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A summary of the subgroup structure � is also found in [3,4] and [5].  
 
Theorem 1 [6, p.9]  Let � be a permutation group and �, ℎ ∈ �. Suppose ℎ has a cycle (ℎ�  ℎ�  ⋯   ℎ�), then 
�ℎ��� = (�ℎ�  �ℎ�  ⋯   �ℎ�).  

  
 
Theorem 2 [7]  Let � be a group acting on set � . Then,  
 

|����(�)|=
|�|

|��|
.                                   (2) 

             
Theorem 3  [7]  Let � act transitively on � . Then this action is equivalent to the action of � on the right cosets 
of ��  for � ∈ � .  

  
Theorem 4   A graph � is Eulerian if and only if each vertex has an even degree.  

  
Theorem 5  [8, P. 44]  Let � act transitively on set � . Then the number �∗(�) of self-paired suborbits is given 
by,  

�∗(�) =
�

|�|
∑  �∈� |���(��)|                  (3) 

  
Theorem 6  [9] Let � act on �  and � be a suborbital graph corresponding to �(�). The following statements 
are equivalent.  
 

i. Γ is disconnected.  
ii. The set ℬ(�) of all the elements which are at a finite distance from � in Γ is a system of imprimitivity for 

Γ.  
iii. There exists a system of imprimitivity ℸ for Γ such that � ∈ ℸ and ℸ∩ Δ(�) ≠ ∅.  
iv. There exists a proper subgroup �  of � containing ��  and ���� (�) ∩ Δ(�) ≠ ∅.  

  
Theorem 7 [9]  A group �  acts primitively on �  if and only if all the non-trivial suborbital graphs 
corresponding to the action are connected.  

  
Theorem 8 [9]  A group � act primitively �  if and only if �� for � ∈ �  is a maximal subgroup of �.  

  
Theorem 9 [9]  If � is a disconnected suborbital graph, then the set of vertices in the component containing � is 
���� (�) where �  is a subgroup of � containing ��  and ���� (�) ∩ �(�) ≠ ∅.  

  
Theorem 10 [10] Let � be a suborbital graph of a transitive action. Then all disconnected components of � are 
isomorphic.  

  
Proposition 2.1   Let � act transitively on �  and let �� be any undirected suborbital graph corresponding to 
��(�), where � ∈ � . Then the number �(��) of triangles in �� is given by,  
 

�(Γ�) =
|�||��(�)∩��(�)||��(�)|

�
   where  � ∈ Δ�(�).                  (4) 

  
Proof. All the edges of Γ� originating from vertex � ∈ �  are of the form (�, �) where � ∈ Δ�(�). A triangle in Γ� 
with (�, �) as an edge is formed by vertices �, � and � such that z  ∈ Δ�(�) ∩ Δ�(�). The number of such � and � 
is |Δ�(�) ∩ Δ�(�)| and |Δ�(�)| respectively. The number |Δ�(�) ∩ Δ�(�)| is independent of � and � chosen.[See 
[9]] Therefore |Δ�(�) ∩ Δ�(�)||Δ�(�)| is twice the number of triangles with � as a vertex. Since Γ� is regular, 
this number is same for any � ∈ � . A triangle has 3 vertices and therefore |�||Δ�(�) ∩ Δ�(�)||Δ�(�)| is 6 times 
the number of triangles in Γ�. Hence we obtain Equation 4.  
 
Proposition 2.2   Let � act transitively on � . Then any suborbital graph corresponding to a non-trivial self-

paired suborbit of � of length one is a forest and has 
|�|

�
 components.  
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Proof.  The suborbital graphs of a transitive action are regular and have valency equal to the length of the 
corresponding suborbit. In this case the length is one and therefore each vertex is adjacent to only one vertex. 
Therefore the graph is disconnected and each component has two vertices. The graph is a forest since there are 

no non-trivial circuits. It follows that the graph has 
|�|

�
 components.  

  
Proposition 2.3   Let �� be a suborbital graph of �  acting transitively on �  corresponding to a self-paired 
suborbit ��(�) of length �. If �� + 1 > |�|, then the girth of �� is less than or equal to 4.  
 
Proof.  Let �� be the suborbital graph corresponding to ∆�(�) with |∆�(�) |= �. Let {��, ��, … , ��}=  ∆�(�). �� 

has undirected edges (�, ��) with �= 1,2, … , �. If ∆�(�) ∩ ∆�(��) ≠ ∅ then �� has a triangle formed by � → �� →

� → � where � ∈ ∆�(�) ∩ ∆�(��). Suppose  ∆�(�) ∩ ∆�����= ∅  ∀�= 1,2, … , �. Then �� has no triangles. We 

need to show that �∆�����∩ ∆�(��)�− {�}≠ ∅ for some �, � = 1,2, … , � with �≠ �. By way of contradiction 

suppose �∆�����∩ ∆�(��)�− {�}= ∅  for some �, � = 1,2, … , � with �≠ �. Then each of �� ∈ ∆�(�)  with 

�= 1,2, … , �  is adjacent to other � − 1 vertices different from vertices in {�}∪ ∆�(�) .  These vertices are 
�(� − 1). Adding the vertex � and  � vertices in ∆�(�) we get �� + 1 vertices which is greater than the vertices 

in ��. This leads to a contradiction and therefore �∆�����∩ ∆�(��)�− {�}≠ ∅. Hence there exists a cycle of 

length 4. This cycle is formed by vetices � → �� → � → �� → �,where � ∈ �∆�����∩ ∆�(��)�− {�}. 

 

 
 

3 Main Results 
  

3.1 Subdegrees of � = ���(�, �) acting on the cosets of � = ���� 
 
Lemma 11  The action of � on the cosets of �  is equivalent to the action of � on the set �� where � ∈ �� and 
|�|> 2.  
Proof. The subgroup �����(x) is � . By Theorem 3, the two actions are equivalent.  
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Theorem 12   Let �  act on cosets of a subgroup ����. Then the rank is � and the subdegrees are [1][�] and 

[� + 1][���].  

 
Proof.  By Lemma 11, the action is equivalent to the action of � on �� where � ∈ �� with |�|> 2. In � = ���� 

there are only two elements of ��. The centralizer of each of these elements is � . Therefore by Theorem 2, each 
of the two elements is self-conjugate in � and is contained in a suborbit of length 1. Thus there are two suborbits 
of length 1. If � ∈ (�� − � ), then its centralizer in �  is {�}. Therefore, by Theorem 2, |���� (x)|= � + 1. 
Since |�� − � |= �� − � − 2, there are � − 2 suborbits of length � + 1. Summing these suborbits, we obtain 
the rank is �.  

  

4 Suborbital Graphs of � = ���(�, �) Acting on the Cosets of � = ����  
 
Theorem 13   All suborbits of ���(2, �) acting on the cosets of ���� are self-paired.  

  
Proof. By Lemma 11 this action is equivalent to the action of �  on �� , where � ∈ ��  and |�|≠ 2  by 
conjugation. The square of each of �� involutions in � and �� fixes �(q − 1) elements in ��. If � is an elliptic 
element with |�|> 2 , then ��  fixes only ℎ and ℎ��  in ��  such that ℎ ∈ ����  containing � . If �  is either a 

hyperbolic or a parabolic element with |�|> 2, then �� does not fix any element in ��. Therefore, if � is odd, 
the number of self-paired suborbits �∗(�) is given by,  

 

�∗(�) =
�

�(����)
[�(� − 1) + �(� − 1)�� + (� − 1)

�(���)

�
]= �.         (5) 

 
If � is even,  

 

�∗(�) =
�

�(����)
[�(� − 1) + �(� − 1)(�� − 1) + �(

�(���)

�
]= �.         (6) 

 
From Theorem 12, the rank is �. By Equations 5 and 6, it follows that all suborbits are self-paired.  

  
Theorem 14  Let � be a suborbital graph of � acting on the cosets of �  corresponding to a suborbit �(�) of 
length � + 1. Then � is connected.  

  
Proof.  There is no proper subgroup � of � properly ��  where � is an elliptic element of order � + 1 such that 
  ����(�) ∩   Δ(�) ≠ ∅. Therefore, by Theorem 6, Γ is connected.  

  
Theorem 15   Let � be a suborbital graph corresponding to a suborbit of length � + 1. Then the girth of � is 
either 3 or 4.  

  
Proof.  There are �� − � cosets. Also (� + 1)� + 1 = �� + 2� + 2 > �� − �. Therefore by Proposition 2.3, Γ 
has girth 3 or 4.  

  

Theorem 16  The suborbital graph � corresponding to the non-trivial suborbit of length 1 is a forest with 
����

�
 

components.  

  
Proof.  The result follows from Proposition 2.2 and Theorem 13.  

  
Theorem 17 Let �  act on the cosets of � , where �  is odd. Then all suborbital graphs corresponding to 
suborbits of length � + 1 are Eulerian.  

  
Proof. The vertex degree of these graphs is � + 1 and it is even. Therefore the graphs are Eulerian.  
We now give an algorithm to construct the suborbital graphs of � acting on the cosets of �  when �  3. In the 
algorithm, we first express � as a permutation group on ��(1, �) and then compute the permutation group of � 
acting on ��, where |�|= � + 1 .  



 
 
 
 

Kimani and Adicka; JAMCS, 36(7): 11-20, 2021; Article no.JAMCS.67384 
 
 

 
16 

 

Algorithm 4.1   The following steps are used to construct the suborbital graphs corresponding to this action 
when �  3.  
 
1. Find the elements of of ��(1, �) and index them as follows where � is the generator of ��(�)∗: 1:= �, 

2:= ��,… , � − 1:= ����, �:= 0, � + 1:= ∞ . 

2. Find the generators of � using �� = �� , �� =
�

�
 and �� = � + 1 as permutations on ��(1, �). �� takes 

the form (1  2  …   � − 1),   �� takes the form (1  � − 2)(2  � − 3) … (
���

�
  
���

�
)(�    � + 1) if q is odd and 

(1  � − 2)(2  � − 3) … (
���

�
  
�

�
)(�  � + 1) if � is even. �� depends on the generator of ��(�)∗ chosen. 

3. Find an element of order � + 1 by multiplying permutations above and call it ��. Now � =< ��, ��, �� >
=< ��, �� > . 

4. Find the conjugates of �� in � using ��, ��, �� and �� using Theorem 1. Index them according to the way 
�� permutes them. As a result ��

�, ��
�, ��

� and ��
� will be obtained. 

5. Obtain the suborbits from �′�. They correspond to the disjoint cycles of �′�. 
6. Let Δ�(�) be the ���  �� − orbit. Then set Δ�(�) contains the vertices adjacent to �. The vertices adjacent to 

�� are the set Δ�(��) = �Δ�(�). By applying �′� and �′� to Δ�(�) and �, all edges of Γ� can be obtained as 
(�, �(�)), where 

�(�) = �
� ∈ �′�Δ�(� − 1), ifη − 1isnotthelastelementinacycleofg′�
� ∈ Δ�(�):(�′�)

� � = �, ifη − 1isthelastelementinacycleofg′�
�,      (7) 

where � ∈ ℕ . Since the all suborbits are self-paired, (�(�), �) is also an edge of Γ�. 

7. Plot 
�(���)

�
 vertices and edges obtained as in 4.1. 

  
Example: Construction suborbital graphs of � = ���(2,5) acting on the cosets of �� 
 
A generator of ℤ�

∗ is 2. We now index the elements of ��(1,5). 
 
1:= 2, 2:= 2� = 4, 3:= 2� = 3, 4:= 2� = 1, 5:= 0, 6:= ∞ . 
 
In this case �� = (1  2  3  4), �� = (1  3)(5  6) and �� = (1  3  2  5  4). By trial and error method we find �� 
through multiplications of ��  �� and �� . We get �� = ������ = (1  5  6  4  2  3) and ��

�� = (1  3  2  4  6  5). 
Now � = 〈��, ��〉.  
 
Next we find �′� by applying �� on (1  5  6  4  2  3). 
 

 (1:= (1  5  6  4  2  3))(2:= (1  3  4  2  5  6)  3:= (1  2  3  6  4  5)  4:= (1  4  2  6  5  3)  5:=
(1  5  2  3  4  6)  6:= (1  2  4  5  6  3)  7:= (1  5  3  2  6  4))  (8:= (1  6  2  5  3  4)  9:= (1  2  5  4  3  6)  10:=
(1  4  5  3  6  2)  11:= (1  4  3  5  2  6)  12:= (1  6  3  4  5  2)  13:= (1  2  6  3  5  4))(14:=
(1  3  2  4  6  5))(15:= (1  6  5  3  4  3)  16:= (1  5  4  6  3  2)  17:= (1  3  5  6  2  4)  18:=
(1  6  4  3  2  5)  19:= (1  3  6  5  4  2)  20:= (1  4  6  2  3  5)) 
 
Therefore �′� = (1)(2  3  4  5  6  7)(8  9  10  11  12  13)(14)(15  16  17  18  19  20). 
 

 Applying �� 
 (1:= (1  5  6  2  4  3)  2:= (1  3  4  2  5  6)  17:= (1  3  5  6  2  4)  6:= (1  2  4  5  6  3))  (5:=

(1  5  2  3  4  6)  (8:= (1  6  2  5  3  4)  13:= (1  2  6  3  5  4)  3:= (1  2  3  6  4  5))(14:=
(1  3  2  4  6  5)  15:= (1  6  5  3  4  3)  4:= (1  4  2  6  5  3)  19:= (1  3  6  5  4  2))(18:=
(1  6  4  3  2  5)  11:= (1  4  3  5  2  6)  10:= (1  4  5  3  6  2)  16:= (1  5  4  6  3  2))  (7:=
(1  5  3  2  6  4)  9:= (1  2  5  4  3  6)  20:= (1  4  6  2  3  5)  12:= (1  6  3  4  5  2))  
 
Therefore �′� = (1  2  17  6)(5  8  13  3)(14  15  4  19)(18  11  10  16)(7  9  20  12). 
 The suborbits are can be extracted from the disjoint cycles of �′�  and they are Δ�(1) = {1}, Δ�(1) =
{2,3,4,5,6,7}, Δ�(1) = {8,9,10,11,12,13}, Δ�(1) = {14} and Δ�(1) = {15,16,17,18,19,20}. 
 
Using these suborbits and Equation 7, we obtain Array 8.  
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Δ�(1) = {2,3,4,5,6,7} Δ�(1) = {8,9,10,11,12,13} Δ�(1) = {14} Δ�(1) = {15,16,17,18,19,20}

Δ�(2) = {17,5,19,8,1,9} Δ�(2) = {13,20,16,10,7,3} Δ�(2) = {15} Δ�(2) = {4,18,6,11,14,12}
Δ�(3) = {18,6,20,9,1,10} Δ�(3) = {8,15,17,11,2,4} Δ�(3) = {16} Δ�(3) = {5,19,7,12,14,13}

Δ�(4) = {19,7,15,10,1,11} Δ�(4) = {9,16,18,12,3,5} Δ�(4) = {17} Δ�(4) = {6,20,2,13,14,8}

Δ�(5) = {20,2,16,11,1,12} Δ�(5) = {10,17,19,13,4,6} Δ�(5) = {18} Δ�(5) = {7,15,3,18,14,10}

Δ�(6) = {15,3,17,12,1,13} Δ�(6) = {11,18,20,8,5,7} Δ�(6) = {19} Δ�(6) = {2,16,4,9,14,10}

Δ�(7) = {16,4,18,13,1,14} Δ�(7) = {12,19,15,9,6,2} Δ�(7) = {20} Δ�(7) = {3,17,5,10,14,11}

Δ�(8) = {12,17,18,10,2,7} Δ�(8) = {16,6,14,3,19,1} Δ�(8) = {11} Δ�(8) = {9,4,5,13,15,20}

Δ�(9) = {13,18,19,11,3,2} Δ�(9) = {17,7,14,4,20,1} Δ�(9) = {12} Δ�(9) = {10,5,6,8,16,15}

Δ�(10) = {8,19,20,12,4,3} Δ�(10) = {18,2,14,5,15,1} Δ�(10) = {13} Δ�(10) = {11,6,7,9,17,16}

Δ�(11) = {9,20,15,13,5,4} Δ�(11) = {19,3,14,6,16,1} Δ�(11) = {8} Δ�(11) = {12,7,2,10,18,17}

Δ�(12) = {10,15,16,8,6,5} Δ�(12) = {20,4,14,7,17,1} Δ�(12) = {9} Δ�(12) = {11,16,17,9,7,6}

Δ�(13) = {11,16,17,9,7,6} Δ�(13) = {15,5,14,8,18,1} Δ�(13) = {10} Δ�(13) = {12,17,10,8,7}

Δ�(14) = {15,20,19,18,17} Δ�(14) = {12,11,10,9,8,13} Δ�(14) = {1} Δ�(14) = {2,7,6,5,4,3}

Δ�(15) = {4,12,14,11,6,18} Δ�(15) = {7,10,16,20,13,3} Δ�(15) = {2} Δ�(15) = {17,9,1,8,19,5}
Δ�(16) = {5,13,14,12,7,19} Δ�(16) = {2,11,17,15,8,4} Δ�(16) = {3} Δ�(16) = {18,10,1,9,20,6}

Δ�(17) = {6,8,14,13,2} Δ�(17) = {3,12,18,16,9,5} Δ�(17) = {4} Δ�(17) = {19,11,1,10,15,7}

Δ�(18) = {7,9,14,8,3,15} Δ�(18) = {4,13,19,17,10,6} Δ�(18) = {5} Δ�(18) = {20,12,1,11,16,2}

Δ�(19) = {2,10,14,9,4,16} Δ�(19) = {5,8,20,18,11,7} Δ�(19) = {6} Δ�(19) = {15,13,1,12,17,3}

Δ�(20) = {3,11,14,10,5,17} Δ�(20) = {6,9,15,19,12,2} Δ�(20) = {7} Δ�(20) = {16,18,1,13,18,4}
 (8)Using Array 8, we obtain Figures 1, 2, 3 and 4 representing suborbital graphs Γ�, Γ�, Γ� and Γ� corresponding 
to Δ�(1), Δ�(1), Δ�(1) and Δ�(1) respectively.  
 

 
   

Fig. 1. Suborbital graph �� 
 
|Δ�(1) ∩ Δ�(2)|= 1 and therefore, by Proposition 2.1, Γ� has 20 triangles. It follows that the girth is 3. The 
graph is also connected and has diameter 3. 
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Fig. 2. Suborbital graph �� 
 

|Δ�(1) ∩ Δ�(2)|= 0 and therefore, by Proposition 2.1, Γ�  has no triangles. It follows that the girth is 4 by 
Theorem 15. The graph is also connected and has diameter 3. 

   

 
 

Fig. 3. Suborbital graph �� 
 

Γ�  is disconnected with 10 components. The graph is a forest and therefore, the girth is 0. Note that each 
component of Γ� are of size 2 consisting of � and x�� where � ∈ ���. 
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Fig. 4. Suborbital graph �� 
 

|Δ�(1) ∩ Δ�(2)|= 2 and therefore, by Proposition 2.1, Γ� has 40 triangles. It follows that the girth is 3. The 
graph is also connected and has diameter 3. 
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