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1 Introduction 
 
In this study we investigate how to decompose the Riemannian curvature tensor using the decomposition 

tensor field 	Ø���  and then study its propertie �	Ø��� = −Ø���	,Ø�� = −Ø��	, ��		�
�  =0 , ��		Ø�� + 	��		Ø�� +

��		Ø�� = 0.Next we use the above decomposition to study the different properties of the decomposition 
tensor i.e. it skew symmetric, recurrent and satisfies the Bianchi identity.  
 
This Section begins with definition of spaces of N-dimension, coordinate transformations, tensor, covariant 
and contra- variant tensors, kronecker delta, symmetric and skew symmetric tensors, tensor contraction, a 
manifold, line element and metric tensor, conjugate tensor, christoffel symbols, tangent vector, tangent 
space, tensor field, affine connection, parallel transport and covariant differentiation. 
 
Definition 1.1; Spaces of N-dimension  
 
In a three dimensional space, a point is a set of three numbers called coordinates in a coordinate system or 
frame of reference. A coordinate system is a system which uses one or more numbers, or coordinates, to 
uniquely determine the position of the points or other geometric elements on a manifold such as Euclidean 
space.  Similarly, a point in N-dimensional space is a set of N numbers noted by   (X1, X2,…,XN) [4].     
 
Definition 1.2; Coordinate transformations  
 
Let (X1, X2,…, XN) and ((���, ���, ���, … , ���)	 be coordinates of a point in two different frames of reference. 
Suppose there exists N independent relations between them as under 
 

��� = ���(X�, X�, … , X�) 
��� = ���(X�, X�, … , X�) 
��� = ���(X�, X�, … , X�) 
 

which can be expressed as 
 

��� = ���(X�, X�, … , X�), k =1, 2,…, N              (1.1) 
 
where it is assumed that the functions are single – valued, continuous and have continuous derivatives. 
 

Conversely to each set of coordinates 
 
(��, ��, … , ��)	 there will corresponds a unique set of coordinates  (���, ���	, ���, … ,��� )  given by 
 

�� = ��(���, ���, ���, … , ���) [5]              (1.2) 
 
Definition 1.3; Tensor 
 
A tensor at a point on a coordinate manifold is a geometric object attached to that point satisfying certain 
properties. It is an abstract object having a definitely specified system of components in every coordinate 
system under considerations and such that under transformations of coordinates the components of the object 
undergo a transformation of certain nature. They describe relations between geometric objects [4]. 
 

Definition 1.4; Covariant and Contra-Variant Tensors 
 
If N2 quantities ���  in a coordinate system (��, ��, … , ��) are related to other N2 quantities �̅�� in another 
coordinate system (���, ���, … , ���)	by the transformation equation 
 

�̅�� =
����

���

����

���
���                                                                                                                            (1.3) 
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Then they are called contra-variant components of a tensor rank 2. 
 
The N2 quantities ���  are called the components of a covariant tensor of rank two if they are related by the 
transformation equation; 
 

��� =
���

����

���

����
�̅��                                                                                                                                                           (1.4) 

 

Similarly the   N2 quantities	��
�
	are called the components of a mixed tensor of rank two (0ne contravariant 

and one covariant if  
 

��
�

=
����

���

���

���
 ��
�                          [6]                                                                                                   (1.5) 

 
Definition 1.5; The Kronecker Delta 
 
The kronecker delta ��

� is a mixed tensor defined by  

 

��
� = �

�	��	� ≠ �
1	��	� = �

�                                                                                                                               (1.6) 

 
Definition 1.6; Symmetric and skew – symmetric tensors 
 
A tensor is said to be symmetric with respect to two contravariant or two covariant indices if its components 
remain unaltered upon interchange of indices. For example 
 

���
� = ���

�  

 
A tensor is skew symmetric if 
 

���
� = −���

� 																	[7] 

 
Definition 1.7; Tensor Contraction 
 
If one covariant and one contra-variant index of a mixed tensor are set equal, then the result indicates that 
the summation over the equal indices is to be taken, the resulting tensor is of rank two less than the original 
tensor.  This process of reducing the rank of a tensor by two is called tensor contraction [4]. 
 
Definition 1.8; A Manifold 
 
An n-dimensional Manifold, Vn (n-manifold) is a Housdorff – Topological connected space with the 
property that each point of it has a neighborhood which is homeomorphic to an Euclidean bowl En of n-
dimensions [4]. 
 
Definition 1.9; The line-element and metric tensor 
 
In a N – dimensional space, we define the line element as ds by the Quadratic form called the metric form as 
under: 
 

��� = 	Ʃ���
� Ʃ���

� �����
����                                                                                                        (1.7) 

 
Or	��� = �����

���� 



here the quantity ��� is called the components of cova
[4]. 
 
Definition 1.10; Conjugate or Reciprocal metric tensor 
 
Let g = �����    denote the determinant with elements 

 

��� =
��������	���

�
                                                                                                              

��� is also asymmetric tensor known as conjugate tensor 
 
Definition 1.11; Christoffel symbols
 

The Christoffel symbols are tensor-like objects derived from a
the geometry of the metric and appear, for example, in the

kinds of Christoffel symbols, the first kind
second kind are also known as affine connections (Weinberg 1972, p. 71) or connection coefficients (Misner 
et al. 1973, p. 210).  
 
These are numerical arrays of real numbers that describe, in coordinates the effects of parallel transport in 
curved surfaces and more generally, manifold represented by 
 

{�, �, �} 	= 	½	(����� + �����
 

and 
 

�
�
��
� = Γ��

� = ���[�, ��]                            

 

Equations (i) and (ii) are called the Christoffel symbols of the first and second kind respectively
 

The christoffel symbols [�, ��]  and �

reciprocal. Through the following  equations
 

[�, ��] = ������
�  

���[�, ��] = ���
�  

 

Definition 1.12; Tangent vector 
 

A tangent vector to a curve C passing through a po

of numbers �
���

��
�
�
� = 1, 2, … , � 

 

relative to the coordinate system {��}
 

Thus if �� is the tangent vector at O to C then 
 

�� = ��
���

��
�
�

, �
���

��
�
�

, … , �

 

Definition 1.13; Tangent space 
 

The set of all tangent vectors to the coordinate system  
n-dimensional vector space T, called the tangent space at 
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is called the components of covariant tensor of rank two known as the metric tensor

Definition 1.10; Conjugate or Reciprocal metric tensor  

denote the determinant with elements ���	and suppose g≠0. Then ��� is defined as 

                                                                                                              

 
is also asymmetric tensor known as conjugate tensor [4].   

s 

like objects derived from a Riemannian metric . They are used to study 
the geometry of the metric and appear, for example, in the geodesic equation. There are two closely related 

first kind , and the second kind . Christoffel symbols of the 
also known as affine connections (Weinberg 1972, p. 71) or connection coefficients (Misner 

These are numerical arrays of real numbers that describe, in coordinates the effects of parallel transport in 
lly, manifold represented by  

�� − �����)																																																																																						

                                                                                                                     

Equations (i) and (ii) are called the Christoffel symbols of the first and second kind respectively

���
�  are symmetric in the indices j and k.  The relation between is 

reciprocal. Through the following  equations: 

A tangent vector to a curve C passing through a point O of a smooth manifold at point O is ordered n

{ } at O. 

is the tangent vector at O to C then  

�
���

��
�
�

�														 [9] 

The set of all tangent vectors to the coordinate system  {��} to the curves of �� passing through O forms an 
dimensional vector space T, called the tangent space at O [4]. 
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riant tensor of rank two known as the metric tensor  

is defined as  

                                                                                                                           (1.8) 

. They are used to study 
. There are two closely related 

. Christoffel symbols of the 
also known as affine connections (Weinberg 1972, p. 71) or connection coefficients (Misner 

These are numerical arrays of real numbers that describe, in coordinates the effects of parallel transport in 

																						(i) 

                                                                                           (ii) 

Equations (i) and (ii) are called the Christoffel symbols of the first and second kind respectively [8]. 

e symmetric in the indices j and k.  The relation between is 

int O of a smooth manifold at point O is ordered n–tuple 

passing through O forms an 
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Definition 1.14; Tensor field 
 
If to each point of a region in N-dimensional space there correspond a definite tensor, then we say that a 
tensor field has been defined [4]. 
 
Definition 1.15; Affine connection 
 
A geometric object on a smooth manifold which connects nearby tangent spaces and so permits tangent 
vectors fields to be differentiated as if they were functions on the manifolds [4]. 
 
Definition 1.16; Parallel transport 
 
A way of transporting geometrical data along smooth curves in a manifold [4]. 
 
Definition 1.17; Covariant differentiation 
 
This is a way of introducing and working with a connection on a manifold by means of a differential 
operator. The covariant derivatives represent the rates of change of physical quantities independent of any 
frames of reference. The covariant derivative of the tensor �� and ��  are defined as  
 

���
� = ���

� + ���
�
�� 

 
���� = ���� − ���

� �� 
 

Similarly covariant differentiation of a mixed tensor��
�

is given by 

 
����

� = ����
� + ���

����
� − ���

� ��
�																		[10] 

 

2 Methodology 
 
This Section begins with definition of Riemannian manifold, Riemannian curvature tensor … 
 

2.1 Definition of Riemannian manifold  
 
In differential geometry a Riemannian manifold or Riemannian space (�, �)is a real smooth manifold M 
equipped with an inner product  �� on the tangent space��� at each point P that varies smoothly from point 

to point in the sense, that is if X and Y are vector fields on M, then   � → ����(�), �(�)�is a smooth 

function [9]. The family �� of inner products is called a Riemannian metric.  It can also be defined as a 
smooth manifold with a smooth section of the positive definite quadratic forms on the tangent bundle [4]. 
 

2.2 Definition of Riemannian curvature tensor 
 
Curvature in mathematics refers intuitively to the amount by which a geometric object deviates from being 
flat, or straight in the case of a line. In a plane this is a scalar quantity, but in three or more dimensions it is 
described by a curvature vector that takes into account the direction of the bend as well as its sharpness [4]. 
 
The curvature of more complex objects (such as curved n-dimensional spaces such as Riemannian 
manifolds) is described by more complex objects. For Riemannian manifolds the curvature is described by 
Riemannian curvature tensor. 
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Riemannian curvature tensor associates a tensor at each point of a Riemannian manifold that measures the 
extent to which the metric tensor is not locally isometric to a Euclidian space. It is a central mathematical 
tool in the theory of the General Relativity, the Modern Theory of Gravity and the curvature of space time is 
in principle observable via the geodesic deviation equation.  The curvature tensor represents the tidal force 
experienced by a rigid body moving along a geodesic [4]. 
 
The curvature tensor with respect to Christoffel symbols has components  
 

����
� given by����

� = �����
� − �����

� + ���
� ���

� − ���
� ���

�                                                               (2.1.1) 

 
The tensor is called Riemannian curvature tensor or Riemannian – Christoffel tensor of the second kind [4]. 
 

2.3 Properties of Riemannian curvature tensor 
 
The Riemannian curvature tensor satisfies the following identities 
 

����
� = −����

�                                          (2.2.1) 

 

����
� + ����

� + ����
� = 0                           (2.2.2) 

 

������
� + ������

� + ������
� = 0                          (2.2.3) 

 
Equations (2.2.2) and (2.2.3) are called Bianchi’s first and second identities [4].  
 

The covariant derivative of the Riemannian curvature tensor ����
� is defined as  

 

������
� = ������

� + ����
� ���

� − ����
� ���

� − ����
� ���

� − ����
� ���

�                                         [4]     (2.2.4) 

 

The commutation laws involving the curvature tensor field ����
�  are given by 

 

�����
� − �����

� = ������
�                            (2.2.5) 

 

������
� − ������

� = ��
� ����

� − ��
�����

�                           (2.2.6) 
 

2�[�)�(�]�
� = ������

�              (2.2.7) 

 
2�[�)�(�]	∅i = - ∅i����

�                            (2.2.8) 

 
The equations (2.2.7) and (2.2.8) are known as Ricci laws for covariant differentiation .Lambda is the 
component of any vector tangential to the surface [4]. 
 
The Riemannian curvature tensor is also skew symmetric with respect to its first two and last two indices 
that is 
 

	����
�  = −����

�                                                                                    (2.2.9) 

 
����
�  = −����

�                           (2.2.10)  

 
The Riemannian curvature tensor in which there exists a non zero vector Vn such that the curvature tensor   
satisfy the relation.   
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������
�  = Vn ����

�                                        (2.2.11) 

 
is said to be recurrent and the curvature tensor field of the space called recurrent tensor field. 
 

����
� 	satisfies the following theorems.   

 
Theorem 2.1 
 
If the associated curvature has components  
 

�����     =  ����
� ���                             (2.2.12) 

 
Then ����� is 

 
Skew symmetric in the first two indices 
 

�(��)��=  0                                       (2.2.13) 

 
Skew symmetric in the last two indices 
 

���(��)=  0                                       (2.2.14) 

 
Satisfy Bianchi’s identities  
 

�[���]�  = 0                          (2.2.15) 

 
�[�   ���]�� = 0                           (2.2.16) 

 
Symmetric in two parts of indices 
 

�����=    �����                                       (2.2.17) 

 
Proof  
 
Using (2.1.1) and (2.2.2) we have  
 

�����  = 2���	�[�		��]�
� 	+ 2���	��[�

�  ��]�
�  

 

�[�		��]�
�  is skew symmetric with respect to indices j and k. and thus in expanded for it can be expressed as 

 

�����   =   2���	 × 	
�

�	
 [ ��	���	

� − ��	���				
� ] +  2���	 × 	

�

�	
 [ ���	

����					
�

− ���	
� ���					

�
] 

 

Alternatively we obtain 
 

�����  =���	��	���	
�  −���	��	���	

�	 +  ���	���	
� ���					

�
− ���	���	

� ���					
�

 

����� +	����� = ���	��	���	
�  −���	��	���	

�	 +  ���	���	
� ���					

�
− ���	���	

� ���					
�

 

+	���	��	���	
� 	− ���	��	���	

� 	+ ���	���	
� ���					

�
− 	���	���	

� ���					
�
	= 0 

����� +	�����= 0 

 
This is equivalent to  
 

���(��)= 0 
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ii)  In view of RICCI identities we find  
 

2	∇[[		� ∇�			]] ���		= −���	 ����
�

 − ���	����
�

 

 
Using   ∇�	���	 = 0  and  equation (2.2.2) we obtain  
 

0 = −����� +	����� 

 
Or equivalently  in symmetric bracket  
 

0 =  ���(��) 

 
which is same as (2.2.14) 
 
iii) If we multiply equation (2.2.2) and (2.2.3) by ���	 and sum with respect to m we obtain (2.2.6) and 
(2.2.7) respectively, 
 
iv) The equation (2.2.15) is equivalent to 
 

����� +	����� +	�����		 = 0 
 

The three similar equations are expressed in the form  
 

����� + 	����� +	�����		 = 0 

����� +	����� + 	�����		 = 0 

����� +	����� +	�����		 = 0 
 

Adding above results we find  
 

����� +	����� +	�����		 + ����� +	����� +	�����		 + 	����� +	����� + 	�����		 + ����� +

	����� +	�����		 = 0 
 

Using  (2.2.3) and  (2.2.14)  
 

Or  
 

����� −	����� −	�����		 − ����� = 0 
 

Or  
 

����� +	����� −	�����		 − ����� = 0 
 

  Or 
 

2����� −	2�����		 = 0 

 
Which proves ����� =  �����  
 

Which is the same as (2.2.17) 
 

Before  stating the second theorem we prove that the Christofell symbol 
 

���			
� = ½ �j log  g = �j  log√�  where  �	 = ����� 

 
Proof  
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From the definition 1.1.7 we know that  
 

���= 
���������	��	���

�
 

 
Or    

��� =
�(��)

�
 

 
Or  �	���=  �(�,�)…….(*) 

 
Multiplying the above equation (*) with   ���   we obtain      

 
�	��� ��� = �(�,�)��� 

 
Or 
 

�	��			
� = �(�,�)��� (for k = r) we have  

 

�=  �(�,�)��� 
 

whose differentiation with respect to �� gives 
 

��

���
  = �(�,�) 	

����

���
   

 

The above result can be expanded as  
 

��

���
  = �		���	([	�, ��] 	+ [	�, ��]) 

 

Considering the effect of conjugate metric tensor we find,  
 

��

���
  = ��� �

��
�� 	+ 	� �� �

��
�� 

 

The above result is equivalent to               
 

��	� = 2	�	���
�        (Since  ��� �

��
�� = ���

�  ) 
 

Which is same as 
 

1
2�  �	�� � = 	���

�  
 

Or 
 

��	���	�� 	= 	���
�  

 

Theorem 2.2 
 

Riemannian curvature tensor of second kind can be contracted in two ways, that is, one yielding a zero and 
other a systematic tensor. 
 

Proof  
 

Contracting indices n and l, equation (2.1.1) we find  
 

�		�
� 	����	

� = 	�		�
�  [	2�[�	��		]�

� 	+ 	2��	[�		
� ��		]�

�  
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Or 

 ����	
� = 2�[�	��		]�

�  +  	2��	[�		
� ��		]�

�                                                   (2.2.18) 

 
We know that 
 

���
�  = 1 2�  ��	 log � 

 

�[�	��		]�
�  = 	1 2� �[���] log �	 = 0                                    (2.2.19) 

 
Also 
 

2��	[�		
� ��		]�

�
= 2��	[�		

�
��		]�
�  

 
Or 
 

2 × 1 2� ����
� ���

� − ���
� ���

�� = 	2 × 1 2� ����
����

� − ���
����

� � = 0	                                                (2.2.20) 

 
Using (2.2.2.) and (2.2.3) in (2.2.1) gives 
 

����			
� = 0                                         (2.2.21) 

 

which proves the first part  
 
The equation (2.1.4) which Bianchi identify is equivalent to 
 

����			
� +	����			

� + ����			
� = 0  

 
Setting m = j  in the above equation gives 
 

����			
�

+   ����			
�

+  ����			
�

= 0                        (2.2.22) 

 

But   ����			
� = 0 in view of (2.2.2), thus above equation reduces to   ����			

� + ����		
� = 0   

 

In view of skew symmetry property of ����			
�

  we get 
 

����			
� − ����		

� = 0   
 

Contracting the above equation it becomes  
 

��� 	+ ���	 = 0   
 

�[��]	
� = 0 

 
Where [    ] is skew symmetric bracket which proved the last part. 
 

3 Decomposition of Riemannian Curvature Tensor ����			
�  

 
Decomposition is a way of breaking up of the Riemannian curvature tensor into pieces with useful individual 
algebraic properties. It is the decomposition of the space of all tensors having the symmetries of the 
Riemannian tensor into its irreducible representation for the action of the orthogonal group. 
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Let’s consider the decomposition of the Riemannian curvature tensor   ����			
� in the following form 

 

����			
� =  ��∅���   ,                                                          (3.1.1) 

 

Where	∅���   is the decomposition tensor field and ��  is a vector field such that  

 
���� = 1               (3.1.2) 
 

According to the Kronecker delta definition (1.1.5) 
 

3.1 Properties of decomposition tensor field ∅���   
 
If we multiply (3.1.1.) with �� we will obtain  
 

������			
� = �� �

�∅���    

 
Since ����		 = 1  the above equation becomes  
 

������			
� = ∅���                                          (3.1.3) 

 
By interchanging the indices k and l and adding in the above equation we get    
 

������			
� + ������			

� =   ∅��� +   ∅���    

 
Or  
 

�� (����			
� + ����			

� ) =   ∅��� 	+   ∅���                                                            (3.1.4) 

 

Since ����			
� is skew symmetric in the last two indices, that is,  

 

����			
� = − ����			

� in view of (2.2.10) 

 
Using the equation (2.2.10) in the equation (3.1.4) we have  
 

��	( ����			
� −  ����			

� ) 	= ∅��� 	+  ∅���    

 
which reduces to   
 
0 = ∅��� + ∅���  

 
This yields the following identity  
 

∅��� = − ∅���                                         (3.1.5) 
 
Thus we state the following theorems  
 
Theorem 3.1.1 
 
In a Riemannian space the decomposition tensor is skew symmetric in the last two indices, that is  
 
∅��� = −  ∅���   
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We further decompose the tensor field ∅���   as under  

 
∅��� =  ��∅��                  (3.1.6) 

 
Multiplying (3.1.6) by ��	we obtain  
 

��∅��� =  �
���∅��  

 
In view of (3.1.2) the above equation yields 
 

��∅��� =  ∅��                  (3.1.7) 
 

By interchanging the two indices k and l in (3.1.7) and adding the respective results we get 
 

��( ∅��� + ∅���) =  ∅��  + ∅��   

 
in view of (3.1.5) we have  
 

��( ∅��� − ∅_���) = ∅��  + ∅��  , 
 
which reduces  
 

 0 = ∅�� 	+ 	∅��	, 
 
This implies that  
 

∅�� = − ∅��                  (3.1.8) 
 
We state  
 
Theorem 3.1.2 
 
The decomposition tensor ∅��   is skew symmetric with respect to its two indices k and l, that is 
 

∅�� = −	∅��    

 
Using equation (2.2.2) and (3.1.1) we get the following equation  
 

��(∅��� + ∅��� + ∅���   )  = 0            (3.1.9) 

 
Transvecting (3.1.9) by �� we get   
 

���� (∅���  +∅��� + ∅���	) = 0  ,                                                  (3.1.10) 
 

which becomes  
 

∅��� + ∅��� +  ∅��� = 0     
 
In view of (3.1.2)  
 
Thus we have  
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Theorem 3.1.3 

 
The decomposition tensor ∅���  satisfies the identity  
 

∅��� + ∅��� +  ∅��� = 0    

 
Taking covariant differentiation of (3.1.1) with respect to �� and making use of (2.2.11) we obtain  
 

∇�����			
� = ∇��

�∅��� + ��    ∇�∅���                                                     (3.1.12) 

 
Consider ��  to be covariant constant and using (3.1.1) the equation (3.1.12) gives  
 

∇�����			
� = ∇�∅���                                                          (3.1.13) 

 
By virtue of (3.1.1) the equation (3.1.12) yield 

 
∅���∇� �� = 0                                                                                                                        (3.1.14) 
 

Since  ∅���  ≠ 0   therefore we have   
 

∇��
� = 0                                                     (3.1.15) 

 
That is ��  is covariant constant  
 
Hence we conclude  
 
Theorem 3.1.4 
 
The necessary and sufficient condition for the decomposition tensor field  ∅���  and ∅��  to be recurrent is 

that the vector field ��  is covariant.  
 
In view of (3.1.1), (2.1.12) and  
 

����			
� = ��∅���  

 
The Bianchi identity of the form  
 

∇�����	
� + ∇�����	

� + ∇�����	
� = 0   becomes  

 
��	[∇�  ∅��� + ∇�  ∅��� +∇�  ∅���	] = 0                                      (3.1.16) 

 
Transvecting (3.1.16) by ℎ�  it gives   
 

��	[	∇� ∅��  +∇�∅��  +∇� ∅��] = 0                                                  (3.1.17) 
 

Now under the assumption that �� is covariant constant, the equation (3.1.17) reduces to 

 
∇� ∅�� + ∇� ∅�� + ∇� ∅�� = 0                                     (3.1.18) 

 
Which is the Bianchi identity for the Decomposition tensor field of  ∇� ∅�� . Thus we have  
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Theorem 3.1.5 
 
The decomposition tensor field satisfies the Bianchi identity 
 

∇� ∅�� + ∇� ∅�� + ∇� ∅�� = 0 

 

4 Application, Conclusion and Suggestions for Further Research 
 
4.1 Application 
 
Like most mathematicians, Riemannian Geometers look for theorems even when there are no practical 
applications. The theorems like the fundamental theorem of algebra that can be used to study gravitational 
lensing are much older than Einstein’s equation and the Hubble telescope. 
 
Einstein, for example, studied Riemannian geometry before he developed his theories. His equations involve 
a special curvature called Ricci curvature, which was first defined by mathematicians. 
 
We expect that practical applications of our theorems will be discovered some day in the future. Without 
having mathematical theorems sitting around for them to apply, Physicist would have trouble discovering 
new theories and describing them. 
 

4.2 Summary and conclusion  
 
In chapter two to this study, we have defined curvature tensor in Riemannian space with respect to 
Christoffel symbols.  In the same chapter we have highlighted identities satisfied by the Riemannian 
curvature tensor which includes; skew symmetric property and the Bianchi identities we have also stated the 

commutative laws involving the curvature tensor field ����			
� in chapter three we have defined the 

decomposition tensor field.  We have then applied commutation laws, Bianchi identities had skew 
symmetric identities to the decomposition tensor field ∅���   and found that:   

 

����			
� = ��∅���     (Decomposition definition) 

 
∅��� = − ∅���     (Skew symmetric property of  ∅���  ) 

 
∅�� = − ∅��   (Skew symmetric property of  ∅��  ) 
 
∅��� + ∅��� +  ∅���	 = 0    (Identity similar to first Bianchi identity) 

 
∇� ∅�� + ∇� ∅�� + ∇� ∅�� = 0	  (Identity similar to second Bianchi identity) 
 

4.3 Suggestion for area of further research 
 
Having investigated some properties of decomposition tensor field in Riemannian spaces we can extend this 
work by investigating properties of decomposition tensor field in recurrent Riemannian spaces and also 
decomposition of Berward and Weyl curvature tensor fields. 
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