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ABSTRACT 
 
Despite a study by [1] proposing a simple model of under five years pneumonia, doubt lingers 
regarding its reliability, sufficiency and validity. The research question is whether the model is valid 
for use or not?  The objectives of this study were to: incorporate exit rate from under five-year age 
bracket in the model, use Kenya data to parameterize the model, taking into account the 
uncertainties and finally to predict the dynamics of pneumonia. The model was rescaled through 
nondimensionalization. Data was fitted using theory of general solutions of nonlinear Ordinary 
differential equations, numerical differentiation using Lagrange polynomials and least square 
approximation method. Uncertainties due to disparities and round off errors were simulated using 
Monte Carlo simulation. Predictions of dynamics of pneumonia were carried out using MATLAB 
inbuilt ode solvers. Excel software was used to predict dynamics of discrete ordinary differential 
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equations and to fit data. The basic reproduction number (��) and effective reproduction number (�) 
were obtained as 61 and 7 respectively. Iteration of uncertainties on R was carried out 1000 times by 
Monte Carlo simulation. The maximum and minimum R were obtained as 90 and 55, respectively. 
Using MATLAB software and effective reproduction number, the ratio of infective class to the total 
population and the ratio of class under treatment to the total population will remain constant at 0.095 
and 0.2297 respectively for the years 2021, 2022 and 2023. Research result indicted that it is more 
effective and efficient to use effective reproduction number (�) than basic reproduction number (��) 
in mathematical modelling of Infectious diseases whenever study focuses on proportion of 
population. On basis of large absolute errors in fitting data to model, findings cast doubt on model 
formulation and/or observed data. 
 

 
Keywords: Childhood pneumonia; lagrange polynomial; parameterization; monte carlo; validation; 

forecasting. 
 

1. INTRODUCTION 
 

Pneumonia is infection of the lungs that is 
caused by fungi, bacteria, viruses, parasites or 
corrosive gas. It is characterized by inflammation 
of the alveoli in the lungs. Bacteria and viruses 
are the primary causes of pneumonia. Older 
adults, babies, and people with other diseases or 
impaired immune systems are more vulnerable 
to pneumonia [2].  
  

Maternal HIV, male sex, maternal smoking, and 
malnutrition are associated with an increased 
incidence of pneumonia [3]. In Brazil, 1.5 million 
new cases of community-acquired pneumonia 
(CAP) occur in children every year, and the 
disease is ranked first on the list of 
hospitalization cases of these children in all 
regions of that country [4]. 
 

Childhood pneumonia is still a major public 
health issue for Kenya despite implementation of 
immunization in under five year’s age bracket. It 
was still leading cause of death among under-
five years, claiming equivalently 16 % of child 
mortality in Kenya [5].  
 
There are three popular techniques of carrying 
out numerical differentiation, these are: method 
based on interpolation, method based on 
undetermined coefficients and method based on 
finite difference operator. Lagrange polynomial 
{��(�)} is one of techniques of method based on 
interpolations. Data with uniform or non-uniform 
mesh points, assumed to be ℎ(�) is first fitted in 
polynomials of the form ��(�) =
∑ L�(x)f�

�
���   then ��

′ (�) ≅ ℎ′ (x) [6,7]. In the 
above, ��(�) denotes an �-degree polynomial in 
�. 
 
Absolute mean and least square approximation 
are the most common method for approximating 

a linear and nonlinear function (�) which may be 
known explicitly over given interval or be given in 
tabular form. The method is used to estimate 
parameters by minimizing the squared error 
obtained as difference between  (�)  and the 
model [6,8,9,6]. 
 

Monte Carlo method is based on generation of 
multiple trials to determine the expected value of 
a random variable which is uniformly distributed 
over the interval [0,1].  Beside a basic spread 
sheet program, Monte Carlo simulations can also 
be run by a number of commercial packages 
[10,11]. This study considered normally 
distributed random numbers. 
   
Mathematical modelling is a process of 
representing essential features of reality using 
Mathematical language [12]. In most sciences, 
validation of hypothesis is done using 
experiments unlike in Mathematical epidemiology 
where experiments may be impossible and 
probably be unethical. However, formulating and 
analyzing biologically relevant disease models 
still poses a major challenge[9,13]  
 

Mathematical modelling of infectious disease is a 
continuous ongoing process which is deemed to 
follow seven stages which are summarized in 
Fig. 1 [13,9,12]. 
 

A model which undergoes all those stages up to 
analysis and forecasting leads to either a new 
generation of models or it is put in use. 
Generation of new models promises to keep 
mathematicians employed for considerable future 
time [13]. Though all the stages are vital, it 
should be emphasized that disease control 
models, which are to be used in control initiatives 
like Childhood pneumonia models, must have a 
realistic validation.  This validation can only come 
from a comparison of model solutions and 
predictions with actual observed data [9]. 



 

A model by design should be as simple as 
possible but its simplicity should never 
compromise its initial objective of addressing a 
real-world problem. Though a simple model of 
childhood pneumonia that was proposed by
hypothesized a solution to perpetual problem of 
under five years pneumonia in Kenya and world 
at large. This developed model  failed to: 
estimate parameters using real data, validate the 
model, forecast pneumonia dynamics, consider 
effective reproduction number and consider the 
rate of under five years children which exit that 
age bracket every year.  This prompted this 
important question, “Is the model proposed by 
fit for use? Or it should lead to a new generation 
of models?  
 

The aim of this study was to: parameterize the 
model using Kenya data, validate or 
invalidate the model, carry out analysis, 
forecast; or propose generation of new 
pneumonia models. The paper is 
organized as follows. Section 2: Rescaling the 
model and model analysis, Section 3: 
Parameterization and Numerical analysis, 
Section 4: Discussion, and Section 5: 
Conclusion. 
 

��

��
= π − � �

�� ��

�
�S − (μ + q 

 
��

��
= � �

�� ��

�
�S −  Ω��              

 
��

��
= фI −  Ω�T                         

 

Where, 
 

Ω� =  ф + q +  μ + ��  + τ;    Ω� =
�(�) = �(�) + �(�) + T (t);    0 ≤ � ≤

 
2.2 Rescaling the Model 
 

Let � = �,�(�) =
�(�)

� (�)
,�(�) =

 
��

��
= b − �(� + ��)s − μs + �
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Fig. 1. Stages of modeling 

A model by design should be as simple as 
possible but its simplicity should never 

objective of addressing a 
world problem. Though a simple model of 

childhood pneumonia that was proposed by [1] 
hypothesized a solution to perpetual problem of 
under five years pneumonia in Kenya and world 
at large. This developed model  failed to: 

imate parameters using real data, validate the 
model, forecast pneumonia dynamics, consider 
effective reproduction number and consider the 
rate of under five years children which exit that 
age bracket every year.  This prompted this 

the model proposed by [1] 
fit for use? Or it should lead to a new generation 

The aim of this study was to: parameterize the 
model using Kenya data, validate or            
invalidate the model, carry out analysis,     

ration of new 
pneumonia models. The paper is               
organized as follows. Section 2: Rescaling the 
model and model analysis, Section 3: 
Parameterization and Numerical analysis, 
Section 4: Discussion, and Section 5: 

2. RESCALING THE MODEL AND MODEL 
ANALYSIS 

 

2.1 Introduction 
 

According to [1], the model was formulated as 
follows, P (t) was the total population of Kenya 
and N(t) was the total population of under five 
years in Kenya which was divided into three sub
classes: the susceptible class S(t
class I(t) and class under treatment T(t)
parameters were as follows: γ was recovery rate, 
the recruitment rate of the Susceptible class was 
� = birth rate (�) × � , death due to disease 
occurred at a rate of α in infectious class,
the natural death rate,  � was the infection rates, 
∂� and  ∂�  were death induced rates due to  
disease in Infected and  treated classes 
respectively, ф was the rate of treatment for 
children , τ ��� γ were the rate of recovery from 
infectious class and treated classes and 
exit rate from under five years age bracket. The 
force of infection per time was defined as

� �
�� ��

�
�. The dynamics of childhood pneumonia 

was described using first-order systems of 
equations as follows 

 )S + �� + ��                                                                               

                                                                                                        

                                                                                                        

 μ +  γ + q +  ��;   
≤ 1. 

)
�(�)

� (�)
 ��� �(�) =

�(�)

� (�)
.  

�� + ��                                                                                            
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) and class under treatment T(t).  Other 

parameters were as follows: γ was recovery rate, 
rate of the Susceptible class was 

, death due to disease 
occurred at a rate of α in infectious class, μ was 

was the infection rates, 
were death induced rates due to  
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respectively, ф was the rate of treatment for 

were the rate of recovery from 
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force of infection per time was defined as λ(t)  =
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order systems of 
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��

��
= �(� + ��)s −  Ω��                                                                                                                                          (5), 

 
��

��
= фi −  Ω�r                                                                                                                                                     (6) 

 

Since, 
 

� = 1 − � − �  
 

di

dt
= β(i + ηr) − {β(i + ηr)(i + r) +  Ω�i}                                                                                                     (7) 

 
dr

dt
= фi −  Ω�r                                                                                                                                                        (8) 

 

2.3 Positivity and Boundness of the 
Solutions 

 

2.3.1 Theorem 1. 
 

The region R given by R = {[i(t),r(t)]ЄR�  
� |s(0)  ≥

 0,i(0)  ≥ 0,b = μ}  is positively invariant and 
attracting with respect to the system of equations 
(7) - (8). 
 

2.3.2 Proof  
 

Let (�,�) be any solution of the system with non-
negative initial conditions. 
 

Consider, 
��

��
= β(i + ηr) − {β(i + ηr)(i + r) +

 Ω1i. Clearly, βi+ ηr≥0, it follows that  
 
��

��
≥ − {β(i + ηr)(i + r) +  Ω�i}.  

 

On integration, 

�(�) ≥  e∫ �{β(�(� )� η�(� ))(�(� )� �(� ))�  Ω��(� )}��
�

� � � ≥ 0 , 

thus 
��

��
 stays positive. 

 

Similarly, r(t)  >  �(0) e�Ω�� ≥ 0 . Therefore, 
system of equations (7) and (8) lie in the feasible 
region. The time derivative of our total population 

along its solution obtains: 
��

��
+

��

��
+

��

��
= 0 = � −

μ. Therefore � = μ. 

 

2.4 The Basic Reproduction Number (��) 
and Effective Reproduction Number R 

 
At disease-free equilibrium point (DFE), that is 
�� of the system (7) - (8), �� = �� = 0. 
 

This study used the Next-generation matrix 
method determines the basic reproduction 
number [14]. Let ƒ be a matrix of new infections 
terms and �  be the matrix of the remaining 
transfer of infections, 
 

ƒ = �
β(i + ηr) − β(i + ηr)(i + r)

0
� ,  v = �

� 1�

− ф� + � 2�
�. 

 

Matrices F and V are obtained by finding the 
Jacobian matrices of � and � and then evaluated 
at DFE point. The basic reproduction number is 
given by the spectral radius ζ (the dominant 
eigenvalue) of the matrixFV�� FV 

−1
, denoted by 

ζ(FV��)  was obtain as �� = � �
�

� �
+

ηф

� �� �
�.  The 

effective reproductive number � = ��
�(�)

�(�)
. 

 

2.5 Existence of Endemic Equilibrium 
Point (�∗) 

 

2.5.1 Theorem 2 
 

Endemic equilibrium point (�∗) exist whenever 
�� > 1, 

2.5.2 Proof 
 

The endemic equilibrium point �∗ = {i∗,r∗} is determined by equating equations 7 and 8 to zero and 
solving for i∗ and r∗ in terms of R� and R. They are obtained as, 
 

i∗ =
� �(��ф� ф���� (��� ��)� �)

��(ф� � �)(ф�� � �)
 �� i∗ =

� �(��ф� ф��� (��� �)� �)

�(ф� � �)(ф�� � �)
 and   

 

r∗ =
ф(��ф� ф���� (��� ��)� �)

��(ф� � �)(ф�� � �)
 �� r∗ =

ф(��ф� ф��� (��� �)� �)

�(ф� � �)(ф�� � �)
. Also, at �∗, 
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�∗ =
����(− �ф + ф��� + (− 1 + ��)��)

(ф + ��)(�ф + ��)
 ���∗ =  

����(− �ф + ф�� + (− 1 + �)��)

(ф + ��)(�ф + ��)
 

 
Endemic equilibrium exists whenever �∗ > 0, that 
is whenever � > 1 �� �� > 1. 
 
The condition necessary and sufficient for local 
and global stability were established [1].  
 

3. MODEL PARAMETERIZATION, 
VALIDATION AND COMPARISON 

 

3.1 Parameterization 
 
The number of  births  for every 1000 people in 
Kenya from year 2010 to 2017 were:35.09, 
34.34,33.61,32.93,32.32,31.78,31.31 and 30.88 
[2]. Note 
that p = birth rate (b) × Total population(N) . The 
birth rate was obtained as mean of birth rate from 
2010 to 2017 therefore � ≅ 0.0328 with standard 
error of 0.0015. 
 
Under five years is a period from 0 to 59.999 
months, which is about 59.999/12  years. The 
exit rate from that age bracket per year is 

estimated as  
��

��.���
 year�� . Pneumonia had 

accounted for 15%, 16% and 16% of under-five 
deaths for years 2017, 2016 and 2014, whose 
mean is 15.67% and standard error of 0.58% [5]. 
The under-five mortality rate per 1000 from year 
2010 to 2017 was: 58.4, 56.3, 54.4, 52.3, 50.51, 
48.7, 47.1 and 45.6, whose mean was 0.0517 
and standard error of 0.0045 [5]. Therefore, 
Pneumonia accounted for 15.67% and other 
causes 84.33%. Death due to other cause is 
approximated as 84.33% of 0.0517 ≅ 0.0436 . 
Therefore μ ≅ 0.0436  The rate of pneumonia 

induced death for year 2012 and 2013 at 
inpatient classes was 0.0511 and 0.0526 
respectively, mean 0.0519 and standard error of 
0.0011 [15]. 
 

Total Treated �(�) =
��(�)� ��(�)

� (�)
 

 
Estimate 1 (E1): Pneumonia prevalence was 
estimated at 16.1% of total under five population 
in Ethiopia which neighbors Kenya [18]. Then 
S(t) was estimated as: 
83.9% of �(�) and 16.1% of �(�) = ��(�) +  ��(�) +
��(�) + ��(�). 
 
Estimate 2 (E2): Data for outpatients was not 
categorized as under five years but was provided 
for all ages as bloc as 253,731; 552,718; 
535,024; 576,703 for years 2010, 2011, 2012, 
and 2013 respectively. The mean proportion of 
under five years’ inpatient to total outpatient 
cases for the same period 2010 to 2013 was 
obtained as 0.6343 with standard error as 
0.0376. This proportion was used to estimate 
under five years for outpatient. After getting 
estimate for under five years’ outpatient, the 
mean proportion of inpatient to outpatient for 
period 2010 to 2013 was obtained as 0.0136 with 
standard error as 0.0100. The proportion for 
2010 to 2013 was used to estimate under five 
years’ inpatient from 2014 to 2017 and also 
severely and non-severely infected under five 
years children, that is 
��(�) = 0.0136 ��(�). Note that ��(�) + ��(�) =
�(�) − ��(�) − ��(�) 

 
Equations (7) and (8) are expressed as  
  

d

dt
�ln

�(�)

�(0)
�

= β �1 + η �
�(�)

�(�)
− �(�) −

�(�)�

�(�)
� − �(�) − �(�)� − ( ф +

12

59.999
+  0.0436 + ��  

+ τ)                                                                                                                                                                                                                   (11)  
 

d

dt
�ln

�(�)

�(0)
� = ф

�(�)

�(�)
 − ( 0.0436 +  γ +

12

59.999
+  0.0519 )                                                                                                               (12) 

 

Since q =
��

��.���
������;μ =  0.0436; �� = 0.0519 ; 

 

Let 2010 be t=0 and 2017 be t=7, then ln
�(�)

�(�)
 is obtained by fitting values in the table in 7

th
 degree 

polynomial using MATLAB:  
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Table 1. Available population data and estimations of unknown values {Ei} 

 
Year/Variable 2010 2011 2012 2013 2014 2015 2016 2017 
�(�) × 10� 
{E1}{83.9% �(�)} 

4.6145  3.3604 
 

5.8360 
 

5.9132 
 

3.8406 
 

4.7779 
 

6.1263 
 

7.8985 
 

��(�) {E2} 714753 284022 762235 754460 111856 285934 545955 1045393 
��(�){E2} 9721 3863 10367 10261 1522 3889 7425 14218 

i(t) 0.131722545 0.071876014 0.111069868 0.108501844 0.024768001 0.050893462 0.075785754 0.112554545 
��(�) 160940{E2} 350590{E2} 339370{E2} 36580{E2} 615254 618564 613871 449969 

��(�){E2} 86 6425 8028 4279 8368{E2} 8413{E2} 8349{E2} 6120{E2} 
r(t) 0.02927746 0.08913565 0.04994221 0.05250837 0.13623340 0.11009834 0.08521344 0.04844692 

�(�) × 10� 5.5 [16] 4.0053 6.956 [16] 7.0480 [16] 4.5776 {E3} 
 

5.6947 {E3} 
 

7.3019 {E3} 
 

9.4142 {E3} 
 

Kenya 
Population(P(t)) 
× 10� [17] 

41.3502 
 

42.4868 
 

43.6466 
 

44.8268 
 

46.0243 
 

47.2363 
 

48.4616 
 

49.6999 
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ln
�(�)

�(�)
 =  −  0.0032��  +  0.075��  −  0.68��  +  3��  −  6.1��  +  5��  −  0.064� + 1.2 × 10��� ; Norm of 

residuals =1.3694 × 10���. Therefore 
 

d

dt
�ln

�(�)

�(0)
� ≅  −  0.0224��  +  0.45��  −  3.4��  +  12��  −  18.3��  +  10� −  0.064 

 
Similarly, 

 

ln
�(�)

�(0)
 =  0.0069��  −  0.17��  +  1.6��  −  7.2��  +  17��  −  18��  +  6.5� − 2.7

× 10���; norm of residuals =  3.4628 × 10��� 
 

d

dt
�ln

�(�)

�(0)
� ≅ 0.0483��  −  1.02��  +  8��  −  28.8��  +  51��  −  36� +  6.5 

 
Fig. 2. The data was fitted using Excel software least square solver: 
 

a) Mean least square error of 1326.284 and standard deviation of least square error of 1873.4. 
 

b) Mean absolute error of 27.7923208 and standard deviation of absolute error of 25.1594. 
Parameters were estimated as β = 29;η = 0.455;ф = 0.9; �� = 0.0004;τ = 0.006 

 
Fig. 3. The data was fitted using Excel software solver: 
 

a) Mean least square error of 3726.074 and standard deviation of least square error of 
5546.334415 

 
b) Mean absolute error of 43.19271 and standard deviation of absolute error of 46.11121. 

Parameters were estimated as  ф = 0.9;γ =0.00001 
 

 
 

Fig. 2. Fitting i(t) to observed data 
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3.2 Simulations 
 

Simulations were carried out using inbuilt MATLAB ordinary differential equation solver. 
�(�)

�(�)
=0.116759 with standard error as 

 

Fig. 3. Simulation of �(�) using Ro   
 

 

Fig. 5. Simulation of r(t) using Ro                       Fig. 
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Fig. 2. Fitting r(t) to observed data 

Simulations were carried out using inbuilt MATLAB ordinary differential equation solver. 

0.116759 with standard error as ∓0.029109 using population data in Table 1. 

using Ro                       Fig. 4. Simulation of �(�) using R

. Simulation of r(t) using Ro                       Fig. 6. Simulation of r(t) using R
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Simulations were carried out using inbuilt MATLAB ordinary differential equation solver. Average 
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. Simulation of r(t) using R 
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The basic reproduction number  (��)  is estimated as 61  and effective Reproduction number  (R) 

as61 ×
�(�)

�(�)
. Equations 7 and 8 can be expressed as discrete ordinary differential equations by 

incorporating �� and � as below 
 

�(� + 1) = ��i(t) − Ω�i(t)                                                                                                                              (9)  
 

r(t + 1) = фi(t)  −  Ω�r(t)                                                                                                                            (10) 
 

�(� + 1) = ��

�(�)

�(�)
i(t) − Ω�i(t)                                                                                                                      (11)  

 

 
 

Fig. 7. Discrete �(�) fitted using R and Ro           Fig. 8. Discrete r(t) fitted using R and Ro 
 

 
 

Fig. 9. Simulated R with S(t)/N(t) constant     Fig. 10. Simulated R with S(t)/N(t) uncertain 
 

The above discrete equations were fitted to the 
observed data using Excel least square Solver to 
obtain Figs. 8 and 9. 
 

Fig. 8. Mean absolute error were 3.582191 and 
0.730658 for R0 and R respectively, 
Fig. 9. Mean absolute error was 0.05334. 
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3.3 Monte Carlo Simulation using 
Normally Distributed Random 
Numbers 

 
All systems are prone to variability due to either 
assignable causes or chance causes, or both. 
So, for this model to be tractable      
mathematically, we shall assume variability in 
state variables of the rescaled model, that is i(t) 
and r(t). Suppose we investigate how random 
effects and round off errors would affect the 
basic reproduction number and effective 
reproduction number using Monte Carlo 
simulations. The study assumed normally 
distributed random numbers and the iterations 
were carried out using Excel software to obtain 
Figs.10 and 11. 
 

3.4 Bifurcation Analysis Using Numerical 
Method 

 
Numerical analysis of the system of equations 7 
and 8 using the estimated parameters in the 
neighborhood of �� = 1  confirms that achieving 

the condition �� < 1  is sufficient to eradicate 
pneumonia and that the system does not exhibit 
backward bifurcation but a forward bifurcation 
[13]. 
 
From Figs. 13 and 14 obtained using 
Mathematica, �(�) < 0 and �(�) < 0  are not 
biologically meaningful and therefore should be 
construed to mean �(�) = 0 and �(�) = 0 � ince 
�(�) ≥ 0 and �(�) ≥ 0. 
 

3.5 Normalized Sensitivity Analysis of 
Basic Reproduction Number 

 

Sensitivity analysis is ordinarily used to 
determine the vigor of model forecasts to 
parameter values, since there are usually errors 
in data collection methods and supposed 
parameter values. It is used to ascertain 
parameters that have a high effect on �� and 
should be targeted by control approaches. The 
normalized forward sensitivity index of ��, which 
is subject to differentiability on a parameter h, is 

defined by  ��
�� =

���

��
×

�

��
 [13].  

 

Table 2. The following statistics were obtained. Iterations 10000, ��� �� = ��. �����, ��� �� =
��. �����,������� �� = ��. ���,�������� �����  �� �� = �. ������ 

 

 Beta Phi delta2  delta1  Gamma Tau Theta neta mu 
Mean 29 0.9 0.0519 0.0004 0.00001 0.006 0.200003 0.455 0.043082 
Standard 
Deviation 

0.5 0.05 0.0011 0.00005 0.000005 0.0005  0.0005  

 

Table 3. The following statistics were obtained. Iterations 10000, ��� � = ��. �����,��� � =
��. �����,������� � = ��. �����,�������� �����  �� � = �. ������ 

 

 Beta Phi delta2  delta1  Gamma Tau Theta neta mu 
Mean 29 0.9 0.0519 0.0004 0.00001 0.006 0.200003 0.455 0.043082 
Standard 
Deviation 

0.5 0.05 0.0011 0.00005 0.000005 0.0005  0.0005  

 
 

Fig. 11. Fitting data with different values of R 
Numerical results, which were obtained using the estimated parameters confirms that �∗ exist whenever �� > 1. 

�∗ was as {42,9.05} ��� {24.8,75.8} �� �� = 42 ��� � = 22 ������������ 
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Fig. 12. Bifurcation analysis using �(�)             Fig. 13. Bifurcation analysis using �(�) 
 

Table 4. Normalized Sensitivity Analysis of Basic Reproduction Number 

 
Parameters Normalized sensitivity index 
Η 0.581267 
Ф -0.201692 
q -0.568087 
Μ -0.122368 
� 1 
�� -0.000347982 
Τ -0.00521973 
Γ -1.97043E-05 
�� -0.102265 

 

 
 

Fig. 14. Normalized sensitivity analysis 
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4. DISCUSSION 
 
The data obtained in Table 2 was not sufficient 
enough no wonder some estimation were 
inevitable. A case in point is where this had to 
use prevalence rate on study carried in 
neighboring country Ethiopia as a result of lack of 
such documented information in Kenya. In Fig. 2, 
the proportional infective children (�(�)) fitted to 
observed data with mean absolute error of 
27.7923208 and standard deviation of absolute 
error of 25.1594. This cast doubt in the 
developed model and/or observed data of 
infective. Likewise, in Fig. 3, the proportional 
infective children ( �(�) ) abnormally fitted to 
observed data with mean absolute error of 
43.19271 and standard deviation of absolute 
error of 46.11121. This cast doubt in the 
developed model and/or observed data of treated 
children. 
 
MATLAB simulations of dynamics of childhood 
pneumonia using estimated �� and � in Figs. 4 to 
Fig. 7 indicates that �(�)  and r(t) attained 
Endemic equilibrium in 2014 and 2018 for 
�� and �  respectively. This concurs with 
pneumonia induced death in Kenya which seems 
to have stabilized from 15% to 17% [3,5]. 
 
Fitting of discrete ordinary differential equation to 
observed data using R instead of ��  had great 
promise in reducing absolute error by 2.851533. 
Despite good encouragement in use of R, Figs. 8 
and 9 confirms observation made in Figs. 2 and 
3. 
Figs. 10 and 11 amplifies the impact of 
uncertainties in parameter to important 
thresholds in mathematical epidemiology like 
basic reproduction number. The results of 
iterations indicate that policy makers should 
consider 55.87556 ≤ � ≤ 90.04521 when making 
decision. However, Fig. 12 suggests that we 
should consider minimum R in fitting discrete 
ordinary differential equations. 
 
Figs. 13 and 14 show that the system exhibited 
no backward bifurcation which is a good gesture 
to pneumonia interventionist. This means that 
any effort which can reduce reproduction number 
to less or equal to one is sufficient to eradicate 
the menace. Reducing infection rates through 
contacts hold promise in eradicating pneumonia. 
 

5. CONCLUSION 
 

It is more effective and efficient to use effective 
reproduction number (� ) of 7 instead of basic 

reproduction number ( ��)  in mathematical 
modelling of Infectious diseases focusing on 
proportion of population because it’s close to 
probabilistic basic reproduction number of 5.6 
obtained by [19]. The findings cast doubt on 
model formulation and/or observed data. This 
study should give rise to new generation on 
pneumonia model and focus on collection of 
reliable and sufficient data. 
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