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Cardioid microphones/hydrophones are highly directional acoustical sensors, which enjoy easy
availability via numerous commercial vendors for professional use. Collocating three such cardi-
oids in orthogonal orientation to each other, the resulting triad would be sharply directional yet
physically compact, while decoupling the incident signal’s time-frequency dimensions from its
azimuth-elevation directional dimensions, thereby simplifying signal-processing computations.
This paper studies such a cardioid triad’s azimuth-elevation direction-of-arrival estimation accu-
racy, which is characterized here by the hybrid Cramér-Rao bound. This analysis allows the cardi-
oidicity index (x) to be stochastically uncertain, applies to any cardioidic order (k), and is valid for

any real-valued incident signal regardless of the signal’s time-frequency structure.
© 2019 Acoustical Society of America. https://doi.org/10.1121/1.5120521
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I. INTRODUCTION
A. The high directionality of a cardioid sensor

The “cardioid” sensor’s name stems from its heart-
shaped gain response of [xx+ (1 — ) cos (B)]cos®~V(p),
where f§ € [0, 7] denotes the angle measured with respect to
the cardioid sensor’s axis, i.e., the straight line joining the 0°
and the 180° on each of the polar plots in Fig. 1. (Please also
see Chap. 5 of Ref. 1.) Such a cardioid sensor’s heart-shaped
gain pattern is largely unidirectional with one dominant front
lobe, unlike a “figure-8” sensor’s gain pattern with a back
lobe equal in height to its front lobe.

The “cardioidicity index,” o € [0, 1], controls the cardi-
oid’s directivity." Strictly speaking, the cardioidicity index
depends on the wavelength of the incident signal. Hence, should
the incident signal’s frequency be inexactly known or time-
varying, the cardioidicity index would likewise be uncertain.

The order k specifies the power to which the cosine term
is raised in the gain response of the cardioid. First-order car-
dioids date back to at least 1957.> Regarding second-order
cardioids, please see Ref. 3. On third-order cardioids, please
refer to Ref. 4. These higher-order cardioids are often real-
ized by computing the spatial finite differences of data col-
lected by nearby isotropic sensors.”

Cardioid microphones/hydrophones are among the most
practical acoustical sensors in wide professional use. For
introductions, please see the following books: Chaps. 5, 6,
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and 11-21 of Ref. 1; Chaps. 8.3-8.5 of Ref. 2; Chaps. 2.5
and 3.4 of Ref. 6; Chaps. 4.5.6 and 4.5.7 of Ref. 7; Chaps.
3.5-3.7, 5.1-5.5, and 5.8 of Ref. 8; and pp. 111-114,
134-135, 342, and 484 of Ref. 9.

Dating back to at least the 1930s, cardioid micro-
phones are also commercially available from various compa-
nies, including

1) Models 414, C519M, and SE300B, from AKG
Acoustics Company (Vienna, Austria);

(i1)  Models 42, 2020, 4033, 4050, from Audio-Technica
Corporation (Tokyo, Japan);

(iii)) Model B-2 PRO from Behringer Company (Willich,
North Rhine-Westphalia, Germany);

(iv) Model GXL1200BP from CAD Audio Company
(Solon, OH, USA);

(v)  Model Stealthy Cardioid from Core Sound LLC
(Teaneck, NJ, USA);

(vi)  d:screet mini 4080 from DPA Microphones Company
(Alleroed, Denmark);

(vii) Model MXL 770 from Marshall Electronics Inc.
(Torrance, CA, USA);

(viii) Model NT4 from Rgde Microphones
(Silverwater, New South Wales, Australia);

(ix) Models Evolution 914 and 935 from Sennheiser
Company (Wedemark, Lower Saxony, Germany);

(x)  Models BETA 98A and SMS58 from Shure Inc.,
(Niles, IL, USA); and

(xi) Model MKV Microphone from SoundField Ltd.
(Silverwater, New South Wales, Australia).
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FIG. 1. (Color online) The cardioid’s directivity pattern at order k= 1 and various cardioidicity o.

B. The advantages of placing cardioid sensors in
orthogonal orientation and in spatial collocation

Consider three kth-order cardioid sensors all collocating
at the Cartesian origin, but oriented along the x, y, and z
axes. Please see Fig. 2. Such a collocated triad’s physical
compactness provides the advantage of deployment versatil-
ity and easy mobility.

Upon this triad, consider a unit-power signal incident
from a polar angle of § € [0, 7] measured from the positive z
axis, and an azimuth angle of ¢ € [0,27) measured from the
positive x axis. The triad’s response may be characterized by
a3 x 1 array manifold'? of
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[+ (1 — o) sin (0) cos ()] sin®(0) cost~1 ()
[+ (1 — o) sin (0) sin ()] sin~ () sin“~' ()
[0 + (1 — &) cos (0)] cost 1 (0)

(M

At k=1 and o = 0, the cardioid triad degenerates to the
much studied tri-axial velocity-sensor.'*~'®

The above array manifold is independent of frequency.
That is, the spatial collocation uncouples the incident sig-
nal’s time-frequency dimensions from the azimuth-elevation
directional dimensions. This decoupling is most consequen-
tial for signal-processing computations. Consider this sample
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FIG. 2. (Color online) A triad of directional sensors, orthogonally oriented
and collocated as one compact unit at the spherical coordinates’ origin.

grid of Sy r X Saz X Sei, where St p, Sqz, Ser refer to the
grid size along the time-frequency dimensions, in azimuth,
in elevation, respectively. If the three coupled domains
become uncoupled, the product reduces by orders-of-magni-
tude to only a sum of Sy p + Sa; X S

This idea (of collocating diversely oriented cardioids of
arbitrary order and arbitrary cardioidicity index) seems to be
new to the open literature on direction finding to the present
authors’ best knowledge. A triad of collocating/perpendicular
first-order cardioids has been studied in Refs. 12 and 19 for
data-independent beamforming but not for direction finding.
This three-dimensionally orthogonal triad differs from the two-
dimensional triplet of Refs. 20 and 21 where three first-order
standard cardioids (i.e., k=1 and « = 0.5) all lic on a flat
plane, 120° apart of each other in orientation. Reference 22 col-
locates four first-order standard cardioids all on a flat plane, 90°
apart of each other in orientation. Reference 22 also collocates
six first-order standard cardioids with two pointing along the
*x axes, two along the *y axes, and two along the *z axes.

To ease subsequent discussion, re-express Eq. (1) in
terms of the Cartesian direction cosines u := sin (0) cos (¢),
v :=sin (0) sin (¢), w := cos (0), as

[+ (1 — o)u]ut—!
a) = | [+ (1 =)o)t ! |. (2)
[+ (1 — a)w]wk=!

Note that u?> + 1> +w? = 1, V0,VY¢.

Il. THE DATA MODEL

A cardioid may be effectively formed from a uniaxial
velocity-sensor and a pressure-sensor (or from three pres-
sure-sensors) by computing the finite difference among their
data. Please see Refs. 23-32 for details. However, the above
implementation can be imprecise in the real world. All prac-
tical sensors are imperfect.

Hence, the cardioids’ o is modeled here as stochastic and
normally distributed with a mean of & and a standard deviation

J. Acoust. Soc. Am. 146 (2), August 2019

of o, < 1. This g, < 1 presumption helps to render the prob-
ability of o ¢ [0, 1] to be negligible; this presumption would be
reasonable for any well-built sensor for practical use.
Deterministically unknown but to be estimated are 6 and ¢.

To avert extraneous distraction from the present work’s
focus on the uncertainty in o in the cardioids, a simple statis-
tical model is used below. More complex scenarios can be
handled in analogy to the analysis below.

Incident upon a cardioid triad is a real-valued signal
{s(m),¥m} of any time-frequency signal structure. Here, m
denotes the discrete-time index. At the mth time-instant, the
following 3 x 1 data are measured by the triad:

z(m) = a®s(m) +n(m), m=1,... M. 3)
Here, n(m) denotes the additive noise’s 3 x 1 vector, whose ele-
ments are each modeled as real-valued Gaussian, with a mean of
zero and a variance of 0',21. This n() is modeled also as statisti-
cally uncorrelated over time (i.e., over m) and across the three
cardioids, hence, n(k) ~ N'(03,6213). In the above, 0; denotes
aJ x 1 zero vector, whereas I, represents a J x J identity matrix.

All M number of discrete-time samples may be collected
intoa 3M x 1 vector of

2i= [0} (2@ s (200))]
—s®a® +n. “)

T

The conditional data vector z|a has a mean of
p=E[{s®a® +n}o

= E[{s ®a®}[a] + Elnl

=s®al, )

and a covariance matrix of

r—Elz-we-w'l]

= Elnn’]
= oL, (6)
where
n = (), @)Y .., o))
s:=[s(1), 5(2), ..., s(M)]".

Il. HYBRID CRAMER-RAO BOUND DERIVATION FOR
CARDIOIDS OF ANY ORDER K

Collect all three unknown scalar parameters into a vector
&:=1[0,¢,q]". From Egs. (8.49), (8.59), and (8.60) of Ref. 33,
the “hybrid Fisher information matrix” (HFIM) equals

Foo Fogp Fou

F(&) = |Fop Fop Fyu
F(?,ot F¢,a Fot,oc

022 02y;

00 0,°

where 0;; refers to an I x J matrix of all zero entries.
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The (i,j)th element of H(&) is given by
T
oul' ., om 1 o, or _, or 1 [ayr o1 da®)
H L= F - — F r —_— = — |— _— = _—
6= g amﬁz“{ o, am_,} AEE R )

da Ha®
= 8
= [amil G ®

where Tr {} denotes the trace of the matrix inside the curly brackets, and

oal®)
ogl;

S®

0

Ha®) i {o(k — 1) 4 k(1 — o) sin (0) cos (¢)} cos (0) sin*2(0) cos* ! (¢)

% = | {alk — 1) + k(1 — o) sin (0) sin (¢)} cos (0) sin*2(0) sin“ "' (¢)) o
L —{o(k — 1) + k(1 — &) cos (0) } sin (0) cos*~2(0)

a® i —{a(k — 1) + k(1 — o) sin (0) cos (¢) } sin (¢) cos*2(¢) sin* 1 (0)

% = | {a(k—1)+k(1 —a)sin(0)sin(¢p)} cos (¢p) sin®~ 2(¢) sinf~! (0) (10)

5a® _{l—sin(e)cos( $)} sin"1(0) cos* 1 (¢p)
% {1 —sin (0) sin (¢) sin®~1(0) sin*~ ( )| an
{1 —cos (0)} cos*~1(0)

Substitute Egs. (9)—(11) in Eq. (8)

P [83(")T8a<k> s’s 4
68 = 80 1 90— o sin®(20)
402 (k —1)*
sin’(2¢) sin’ (2(9
4ok (k —1)(1 —
sin (2¢) sin (29

[kz(l — o) {sin*(0) cos*(0) + cos*(0) sin* () [ sin*(¢) + cos*(¢)] }

{sin®(2¢) sin®(0) cos* (0) + 4 cos®(0) sin* (0) [ cos® () sin* (¢) + sin®(p) cos™(¢)] }

{sm (2¢) sin® (0) cos* (0) 42 cos® (0) sin** (0) [cos (¢) sin* (¢) + sin ($) cos™ ()] }{,  (12)

Hyy=Hgpp= ST—; [a;;k)} aaa((: = ZS(:—ZS cos (fl)ns(l;j;)l(g) lkz{l — oc}z{cosz(qﬁ) sinzk(qﬁ) — sin2(¢) 0052"(¢)}

Aok {k — 1}{1 — o} . '
sin (2¢) sin (0) {cos®(¢) sin®* (@) — sin’(¢) cos™(¢) }
% {cos*(¢) sin* () — sin*(¢) Cos2k(¢)}] ; (13)

9a®]" 9a® _s's 4 : .
o ] 9 o2 s (24) i (20) [k(1 — a){[cos (0) — 1] sin (2¢) sin*(0) cos>*(0)

+ cos® (0) sin®* (0) [2 cos (¢) sin* (¢) + 2sin (¢) cos™* () — sin (2¢) sin ((9){sin2k(¢>) + 0052"((;’))}}}

% {[cos (0) — 1] sin®(2¢)) sin*(0) cos (0)+2 cos*(0) sin** (0)

x [2cos?(¢) sin®(¢) + 2sin’(¢) cos™ (¢p)—sin (2¢) sin (0){cos (¢) sin**(¢) + sin ($) cos*(¢) }] H, (14)

Hoy = Hyg = SS{

T .
T 83(@] Hak) B sTs481n2k(0) k2(1 B 06)2{0054(4)) Sin2k((]ﬁ) I Sin4((],')) COSZk((]S)}

Hoo = 2 [ ¢ | b a2 sin?(24)
4ok —1)° , ,
o Lo (9)sin (9) + s () cos™ ()
dok(k—1)(1 — o)
sin (2¢) sin (0)

{cos’() sin* () + sin’(¢) cos™ () }], (15)
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Hy,=H,4 = [k(l — a){[1 — sin (¢) sin (0)] cos® () sin* (¢h)

2u(k — 1) . . . %
Sin (26) sin (0) {[1 = sin (¢) sin (6)] cos*(¢) sin*(¢))

+[cos (¢) sin (0) — 1] sin4((j)) 0052"((],'))}} , (16)

T
0a® | galk B sis sin?*~1(0)
0¢ o o2 sin’(2¢)

+[cos (¢) sin (0) — 1] sin*(¢p) cos™ (¢) } +

s [9a®1" o T in2-2(p . . .
Hyy = % [%} % = % [4 Ssl?nz(z((b)) {[sm (¢) sin (0) — 1)* cos?(¢) sin**(¢)

+[cos (¢) sin (0) — 1]* sin (¢)0052k(¢)} + {cos (0) — 1} cos*72(0)|. (17)

Substitute Egs. (12)—(17) in Eq. (7)

Fog = Ey[Hop) = %s]%(ze) [kz{(l —a)’+ ai}{ sin*(0) cos™(0) + cos*(0) sin?* (0) [ sin* ($) + cos*(¢)] }

4k —1)* (3 + 02)
sin®(2¢) sin®(20)

4k(k— 1) [a(l —a) —

sin (2¢) sin (20)

{sin®(2¢0) sin®(0) cos* (0) + 4 cos®(0) sin* (0) [ cos® (p) sin®* (¢) + sin?(p) cos™*(¢)] }

%] {sin (2¢) sin’ (0) cos*(0) + 2 cos®(0) sin*(0) [cos (¢) sin®* (¢p) + sin (¢) cos™*(p)] } |,
(18)

0> sin (2¢))

4{:1; (12}¢;{Zln+( ) {cos*(¢) sin™(¢) — sin*(¢) cos™ () }

4k(k — 1) [a(1 —a) —
sin (2¢) sin (0)

Fog = Fpu = EifHog) =2 [kz{a —5) + 02 }{cos(¢) sin(¢) — sin® () cos™ ()}

2
7 {cos’(¢) sin*(¢) — sin’ () coszw,)}], (19)

s 4 k(1 — &){[cos (0) — 1] sin (2¢) sin*(0) cos*(0)
02 sin (2¢) sin®(20)
+cos?(0) sin** (0) [2 cos (¢) sin* (¢) + 2 sin (¢p) cos™ (¢p) —sin (2¢) sin (0){ sin* (¢) + cos*(¢)}] }
28k — 1)
sin (2¢) sin (20)
x [2cos?(¢) sin® () + 2 sin’(¢) cos™ (¢p) —sin (2¢)) sin (0){ cos () sin* (¢) + sin (¢) cos™ () }] }]. (20)

s's sin(0)
a2 sin*(2¢)
4(k —1)*{a + o2} {cosh (¢
sin’(2¢) sin’(0)
4k(k — D{a(1 —a) — o2}
sin (2¢) sin (0)
ss sin**~1(0)

Yo i 29)

Foo, =Fy9=E,Hy,] =

{[cos (0) — 1]sin(2¢) sin* (6) cos™(0)+2 cos* (0) sin* (6)

Fyp =Ey[Hpg] =

[kz{(l —a)+ ai}{cos“(qﬁ) sin®* () + sin*(¢) cos* () }

) sin® (¢) + sin®() cos™ () }

{cos’() sin* () + sin’(¢) cos™ () }], 1)

Fyo=Fyp=E,Hp, = (k{1 —a}{[1 —sin(¢)sin (0)]cos*(¢)sin*(¢)+[cos (¢)sin (0) — 1]

X sin3(¢) cosy‘(qb)}—&—%{[l —sin(¢)sin (0)] cos4(q5) sinZk(qb)+[cos (¢)sin(0) — 1] sin4(¢)0052"(¢)}],
(22)
in2k—2
Foo=Ey[Hy,) + 6;2 = 4502S lssm (2;9; {[sin (¢)sin (6) — 1] cos (d)) sinZk(q.')) + [cos (¢p) sin (0) — 1] sin ((,b) cosy‘(d))}
+{cos(0) — 11 cos™2(6) +$ (23)
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The hybrid Cramér-Rao bounds for a triad of kth-order
cardioids equal

HCRB(0) = [{F(&)} ], 24)
HCRB(¢) = |{F(&)} '], 5)
HCRB(z) = [{F(&)} ], (26)

Of special practical interest is the first-order cardioid. This
specific case will be investigated in great detail in Sec. IV.

IV. HYBRID CRAMER-RAO BOUND DERIVATION FOR
FIRST-ORDER CARDIOIDS

Most practical cardioid sensors are of the first order, i.e.,
k=1. In this case, Egs. (18)—(23) may be simplified to give
the following expressions for the elements of the HFIM:

F070=§{(1—5€)2+O’§},
Fo =0,
Fg,afsa—z(lfa {cos 9)[sm(cf>)+cos(¢)]fsm(G)},
F¢¢—§{(l—&)2+a}sm2(0)
s’s .
Fy=3(1 =) cos (6) —sin(4)sin (0)
T

1

Faa=223{2 cos(0) = sin(0) eos(6) +sin(¢) } +—.

o

From the above, Egs. (24)—(26) become

HCRB(0) = |{F(&)} '] 5
4TI Ds(0.6) 244 1)D, (0.9)
“A+1 PDy0,4)—2AD,(0,)) + A+1
27)
HCRB(¢) = [{F (&) }"}
A %er(e ¢) —2(A+1)D;(0, )
T A+1 PDy(0,§) —2AD (0, )]+ A+1
) (1 0.4)’ 28)
HCRB(x) {F@) }
(1-a)° (1-a)°
B AA+1)
PDy(0, ) —2AD(0,¢)] + A+ 1'
(29)
where
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D1(0, ) := cos (0) + [sin (¢p) + cos (¢)]sin (0) — 2,
Dy (0, ¢) :=2{1 —cos (0) } {1 — sin (0)
< bin () cos (9]} + 5 ) sin(0),
:=sin (2¢) —
D4(0, ¢) :=sin (20 [sm( ) + cos (¢)]
— cos?(0)sin (2¢)) — 1,
Ds(0,¢) := sin®(0).

107!

(a) How /HCRB(6) of (27) varies with A and versus P.

(b) How /HCRB(9) of (28) varies with A and versus P.

(c) How

HCRB(a) of (29) varies with A and versus P.

FIG. 3. (Color online) The first-order cardioid-triad’s HCRBs at various val-
ues of A := (d,/1 — &)” and various values of P := a2(s”s/a2).
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These hybrid Cramér-Rao bounds are expressed
implicitly in terms of s’s inside P; hence, these bounds
apply to any real-valued waveform, whether wideband or
narrowband, whether time-varying or time-invariant,
whether stationary or non-stationary, whether zero-mean or
otherwise—thereby offering high flexibility and thus wide
applicability.

V. HYBRID CRAMER-RAO BOUND CHARACTERISTICS

For first-order cardioids, HCRB(0), HCRB(¢),
HCRB(2)/(1 — &)*, each has exactly only four degrees of
freedom—A, P, 0, and ¢p—even though the measurement

o
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(b) A=0.01 and P = 10.

(e) A=0.03 and P = 10.

00

(h).A'=0:1. and :P-=10.

data model has more degrees of freedom than four. A larger
0, would increase both A and P, but a larger & would
increase only .4 but not P.

These three hybrid Cramér-Rao bounds are plotted in
Fig. 3 versus A and versus P at (0, ¢) = (30°,45°).

These three hybrid Cramér-Rao bounds are also plotted
in Figs. 3-6, at various A and P. Each figure has a 3 x 3
“matrix” of sub-figures with P increasing rightward in this
3 x 3 matrix of sub-figures, and A increasing downward.

Qualitative observations on Figs. 4 and 5 are:

(@)

Each HCRB in Fig. 3 increases monotonically with a
decreasing P and an increasing A.

VHCRB(0)

6, in degrees . In degrees ? 0. in degrees

(¢) A=0.01 and P = 100.

0

0>0
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(f) A =0.03 and P = 100.
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Q34
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6, in degrees f, n degrees @, in degrees

(i) A=0.1 and P = 100.

FIG. 4. (Color online) The first-order cardioid-triad’s HCRB(6) at different values of A := (¢, /1 — &)* and P := 62(s”s/a2). Refer to Eq. (27).
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FIG. 5. (Color online) The first-order cardioid-triad’s HCRB(¢)) at different values of A := (a,/1 — &) and P := ¢2(s”s/a2). Refer to Eq. (28).

As A increases or as P decreases, both HCRB(0) and
HCRB(¢) and HCRB(2) /(1 — &)* will all increase for
any constant (6,¢). This is largely due to the increasing
vertical displacement.

HCRB(0) and HCRB(¢) vary much less with (0,¢)

than with A or P.
Figure 5 has a shape dominated by the sin®(0) factor

in the denominator. This is physically due to little
acoustical energy projected onto the x-y plane on
which ¢ is defined.

(e) HCRB(¢) — oo as 6 — 0, n. This is because Eq.
(28) has a factor of sin*(6) in its denominator.
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For ai =0, Egs. (27) and (28) reduce to

>
HCRB(0) = ;‘T_sm (30)
2 2 0
HCRB(¢) = (Clsi { ))2 31

Substituting o for «, one obtains Egs. (30) and (31),
which are the Cramér-Rao bounds for a deterministic o« = a.
The expressions suggest that a smaller cardioidicity index
o =o could increase (i.e., could worsen) an unbiased

Kitavi et al.
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FIG. 6. (Color online) The first-order cardioid-triad’s HCRB(a:) at different values of A := (g, /1 — &)* and P := ¢2(s"s/a2). Refer to Eq. (29).

estimator’s error variance. The worst cardioidicity index is
o = o = 0, corresponding to the customary tri-axial veloc-
ity-sensor mentioned in Sec. I.

VI. MAXIMUM A POSTERIORI (MAP) ESTIMATION OF
THE AZIMUTH-ELEVATION DIRECTION-OF-ARRIVAL

The probability density function of the observation z,
given & := [0, ¢, 0], equals

- 1 _
p(2lg) = rl| P exp (‘z[z—ﬂfr ‘[z—M)v (32
whereas the probability density function of o is
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p(a) =

1 (0 —a)?
exp| ————|.
V2na, P 202
Hence, for & given the observation z, the posterior probabil-
ity density function equals

p(€lz) x p(& z) = p(z|¢) p(2)

1 1 T
=———&¢exp| ——z— 7Z—
Ym0 /2T p( 203[ H [z -
(x—a)°
202 '
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order equals k= 1.

The MAP estimate (éMAP) of ¢ given z by definition
equals

(0, ¢, 6() := argmax p(&|z)

(0.6,0)
= argmax p(z|&) p()
(0.6,)
72— uTiz — ey
= arg max [ “ 2[ i + (@ 20() .
(0,,2) O 0y

(33)

The above minimization in Eq. (33) may be solved itera-
tively via MATLAB’s built-in function of fminsearch.

Figures 7 and 8, respectively, for order k=1 and k=2,
show that this MAP estimator and the earlier derived
HCRBs indeed approach each other. Here in Figs. 7 and 8,
a =1 (0,¢)=(20°60°), ¢, =0.1, s(m) = cos(0.6nm),
and there exist P = 1000 Monte Carlo independent trials for
each icon. The root-mean-square error (RMSE) is defined as

\/(1/P) ZII;I (@p — 0)* for the polar arrival angle, and

\/(1/P) Z/}::I (&5[, — ¢)* for the azimuth arrival angle, with

(0 b ¢ ») representing the pth Monte Carlo trial’s estimate.
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FIG. 8. (Color online) The MAP estimates of Eq. (33) approach HCRB(0)
and HCRB(¢), which are derived in Egs. (24) and (25). Here, the cardioid
order equals k =2.
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FIG. 9. (Color online) How ||a(!)||, varies non-monotonically with o and
{u+v+w}.

Figures 7 and 8 also reveal that the HCRBs could
decrease with increasing randomness in o (i.e., as a,
increases). This might surprise some readers. This phenome-
non arises from the cardioid triad’s array manifold having a
Frobenius norm that varies with o (besides varying also with
k,0,¢). For example, at order k=1,

2]l = /322 + (1 — 2)° + 26(1 — o) u + v+ w].
(34)

This ||a!)]|, is plotted in Fig. 9 versus « € [0, 1] and versus
u-+v+we [~1.7071,1.7071]. There, ||a(V)]|, is revealed to
vary not monotonically with changing o. Rather, as o
increases from zero toward unity, |[a)||, would increase,
then would decrease, and finally would increase again. This
pattern is more pronounced for smaller u 4 v 4 w.

Vil. CONCLUSION

This paper advances the idea of placing three cardioid
microphones/hydrophones (of any cardioidic order k) in
orthogonal orientation but spatial collocation for frequency-
independent direction finding—to the best of our knowledge.
This paper has analytically derived the corresponding hybrid
Cramér-Rao bound for direction finding. This derivation
allows for stochastic uncertainty in the cardioidic index o.
Quite surprisingly, the hybrid Cramér-Rao bounds are found
not to decrease with increasing uncertainty in o, and this is
found to be explainable by the array manifold’s Frobenius
norm being non-monotonically dependent on o. At first order
k=1, (a) the hybrid Cramér-Rao bounds turn out to have
only four degrees of freedom: the polar-azimuth direction-
of-arrival (0, ¢), A := (s,/(1 —))* and P := ¢2(s"s/a?),
and (b) a larger cardioidicity index « = & could improve an
unbiased estimator’s error variance.
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