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An array’s constituent sensors could be spatially dislocated from their nominal positions. This
paper investigates how such sensor dislocation would degrade a uniform circular array (UCA) of
isotropic sensors (like pressure sensors) in their direction-finding precision. This paper analytically
derives this direction finding’s hybrid Cramér-Rao bound (HCRB) in a closed form that is
expressed explicitly in terms of the sensors’ dislocation parameters. In the open literature on UCA
direction finding, this paper is the first to be three-dimensional in modeling the sensors’ dislocation.
Perhaps unexpectedly to some readers, sensor dislocation could improve and not necessarily
degrade the HCRB; these opposing effects depend on the dislocation variances, the incident
source’s arrival angle, and the signal-to-noise power ratio—all analyzed rigorously in this paper.
Interesting insights are thereby obtained: (a) The HCRB is enhanced for the impinging source’s
polar arrival angle as the sensors become more dislocated along the impinging wavefront due to
aperture enlargement over the stochastic dislocation’s probability space. (b) Likewise, the HCRB is
improved for the azimuth arrival angle as the sensors become more dislocated on the circular
array’s plane, also due to aperture enlargement. (c) In contrast, sensor dislocation along the inci-
dent signal’s propagation direction can only worsen the HRCBs due to nuisance-parameter effects
in the Fisher information. (d) Sensor dislocation orthogonal to the array plane must degrade the

HCRB for the azimuth arrival angle but could improve the HCRB for the polar arrival angle.
© 2019 Acoustical Society of America. https://doi.org/10.1121/1.5098771
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I. INTRODUCTION

The circular array (also known as a “ring array’) is a pop-
ular array configuration; it has been widely implemented and is
available as a commercial product. Please see Table I for a par-
tial listing of implemented or commercially available circular
arrays of microphones/hydrophones. The circular array is pop-
ular partly because its aperture size and beam shape stay effec-
tively constant even as the array’s “look direction” varies 360°
over the entire azimuth. These advantages stem from the circu-
lar geometry’s spatial centrosymmetry.

A circular array of uniformly spaced identical isotropic
sensors has often been deployed to locate incident emitters’
bivariate azimuth-elevation directions-of-arrival: The corre-
sponding Cramér-Rao lower bounds (CRBs) have been
much investigated in the research literature. For example,

6] References 10-16 analytically derive expressions of
the CRB in a closed form explicitly in terms of the
parameters of the statistical data model.

(ii))  References 17-27 analytically express the CRB, but
in open form (e.g., involving an unsolved integral, an
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unsolved infinite-term summation, or an unsolved
matrix inversion/multiplication) or implicitly in terms
of the statistical data model parameters.

(iii)) References 28—60 plot CRB graphs, but present no
mathematical expression of any CRB.

All the above references presume that all sensors are of
an ideal gain/phase response, and at the nominal locations.

In the real world, sensors may dislocate randomly from
their nominal locations in the array. Such sensor dislocation
has never been accounted for in any analytical derivation of
the Cramér-Rao bound in the open literature on uniform circu-
lar array (UCA) direction finding. That is, the open literature
offers no Cramér-Rao bound expression (whether in a closed
form or an open form) that incorporates the effects of sensor
dislocation. Cramér-Rao bound graphs are only available
(unaccompanied by any mathematical expression) in Refs. 30,
31, and 33 with sensors limited to only two-dimensional (2D)
dislocation on the circle’s plane. Instead, this paper will be first
in the open literature (to the best of the present authors’ knowl-
edge) to rigorously derive the Cramér-Rao bound of direction
finding using a nominally circular array of identical isotropic
sensors that may stochastically dislocate three-dimensionally
in space.

© 2019 Acoustical Society of America
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TABLE I. Practical implementations of a UCA of isotropic sensors.

Number of microphones/

hydrophones Radius Reference
4 (Ref. 1) 9cm 67
6 A choice between 4 cm and 6 cm 2
8 (Ref. 3) Not stated 4
10 4cm 5
12 11.9cm 6
16 8cm 7
24 5.7cm 8
32 Not stated 9

The rest of this paper is organized as follows: Section II
defines the statistical model of the circular array’s sensor dislo-
cation and the statistical model of the measured data. Section
II presents the newly derived hybrid Cramér-Rao bounds
(HCRBs) and analyzes its qualitative characteristics. (The
detailed derivation of the HCRBs may be found in the
Appendix.) Section IV discusses the special case where every
sensor’s dislocation statistics is the same along any of the three
Cartesian coordinates. Section V discusses the special case
where the dislocation is limited to the circle’s Cartesian plane
(i.e., with no vertical component), and compares this 2D dislo-
cation case to the three-dimensional (3D) case of Sec. IV.
Section VI verifies these newly derived Cramér-Rao bounds by
showing Monte Carlo simulations of the maximum a posteriori
(MAP) estimation asymptotically approaching the bounds.
Section VII concludes this investigation.

Il. THE MEASUREMENT DATA MODEL

Suppose L isotropic sensors are positioned nominally on a
circle of radius R with equal inter-sensor spacing. The ¢th sen-
sor’s nominal position may be represented as (R cos(27(¢
—1)/L),R sin (2n(¢ — 1)/L),0) in the 3D Cartesian coordi-
nates, for £ € {0, 1,...,L — 1}. Please see Fig. 1(a).

Real-world manufacturing and field deployment, however,
are imperfect; the sensors may deviate from their nominal posi-
tions mentioned above. Model the /th sensor’s dislocation as
random in 3D space with the deviation along the x-, y-, and
z-axes mathematically represented by the respective stochastic
scalars of A,, Ay,, and A;,. This down-to-earth 3D dislocation
modeling has never been studied (whether analytically or via
simulations) in the entire open literature of UCA direction-
finding Cramér-Rao bound analysis to the best of the present
authors’ knowledge.

Upon this L-element circular array of isotropic sensors, sup-
pose that a point-size emitter impinges from the far field at a
wavelength of A, an azimuth angle of ¢ € [0,2x), and a polar
angle (also known as zenith angle) of 0 € [0, ]. Then, the L x 1
array manifold would have an /th entry of [a], = ¢/, where

ol

+sin(0)cos(¢)A,, + sin(0)sin(¢p)A,, + cos(())Azf}

(M

Yy = 2n [R sin(0)cos (qb -
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FIG. 1. (Color online) A circular array consisting of L sensors, uniformly
spaced on the circumference. (a) All L number of sensors lie precisely at
their nominal positions. (b) Sensor ¢ suffers 3D dislocation, from its nominal
position (indicated by the open purple circle) to an actual position indicated
by the solid purple circle.

for all £ € {1,2,...,L}. Please see Fig. 1(b). Each sensor’s
dislocation is thus allowed to be 3D, as opposed to the 2D
restriction in Refs. 30, 31, and 33 (which plot the CRB, but
present no CRB derivation and no CRB expression).

These 3L random variables in {A, A, A,/
=1,2,...,L} are modeled stochastically as independent
identically distributed Gaussian random scalars with a mean
of zero. Moreover, let A,, (A, A;,) have a variance of
a3 (a7, 2), VL. The statistical model of sensor dislocation in
the abovementioned*®*'** could be construed as a special
case of the general model in this present paper by setting
0.=0.

At the mth time instant, the overall circular array col-
lects this L x 1 vector of data

z(m) =as(m) +n(m) for m=1,2,...M. (2)
To facilitate subsequent analysis on the entire M-sample
dataset, define

Hence, Eq. (2) may be rewritten as
Z=s®a-+n,
where ® refers to the Kronecker product.
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“Direction finding” aims to estimate an incident sour-
ce’s azimuth-polar direction-of-arrival (¢,0) from the data z,
here, despite the sensors’ unknown and stochastic disloca-
tions of {(A,,, A,,, A;,), V3.

To avoid unnecessary distraction from the present focus
on the effects of sensor dislocation, a simple signal/noise sta-
tistical model will be used:

@) The incident signal is a complex-valued sinusoid
s(m) = a,e/®¥"+9) where the amplitude oy, fre-
quency f, and phase ¢ are prior known;

(i)  The additive noise n(m) is modeled as complex-
valued, Gaussian, zero in mean, with a prior known
variance of O'i, and statistically uncorrelated over
time (i.e., over m) and space (i.e., over £).

lll. THE NEWLY DERIVED HCRBs

The Appendix has analytically derived the HCRBs in
closed forms explicitly in terms of the model parameters

11 1
HCRB(0) = =
LSNReff2 LA (R/2)? cos?(0)
s\"= 720 1 + 2SNRefrg(0, ¢)
11 1
" LSNR R 27 ©)
(zcos(ﬁ))
2 N
A T 2SNRuga,
1csc? 1
HCRB(§) = o2 (6) 5
LSNReffz o ¢+E n (R/7)
\72%72) TT 1 2SNRurg(0,9)
11 1
= 4
LSNR.g R 2 @
(Esin(e))
2 ! N /7
@y T OSNRuga,
where

o 2
SNReff = M(Zn _s) s

a, :=g(0,9),

a) = cos?(0) [("jﬁ cos<¢>)2 " (7 sin<¢))2]
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HCRB(0) of Eq. (3) and HCRB(¢) of Eq. (4) share a similar
mathematical form: These two expressions would be identi-
cal, with the former’s a, and (R/1) cos(6) becoming, respec-
tively, the latter’s a,, and (R/Z)sin(0). These two HCRB
expressions in Egs. (3) and (4) both have 8 degrees of free-
dom: L, SNRest, R/ 2, 0ac/ 2, 0ay/ 2, Gaz/A, 0, and ¢.

Figure 2 plots HCRB(0) of Eq. (3) and HCRB(¢) of Eq.
(4) versus ga./A = oay/ /A, and versus g,.//. The following
may be observed.

LHCRB(0) increases with an increasing oa,/A = ga,/A4
or oa,//, up to local maxima and decreases thereafter.
Observe that an increase in oa./A = oay/A Or ga./A has a
double effect: array geometry perturbation and aperture
enlargement. The array geometry perturbation is more pro-
nounced at small values of oa,/A = oay/2 OF Ga.//, thereby
increasing LHCRB(6). Similarly, at large values of ga./4
= oay// Or Ga./A, the array aperture increment dominates,
hence, decreasing LHCRB(0).

The above explanation also holds for LHCRB(¢) non-
monotonic change induced by a varying oac/A = gay/A.
However, LHCRB(¢) monotonically increases with an
increasing oa./A. This observation is not surprising, recall
that the effective aperture for azimuth estimation lies on the
x-y plane, hence, an increase in oa,/A or OAy /7. would
increase/decrease the effective aperture, whereas an increas-
ing g, /2 offers no increment in effective aperture but rather
increases the array perturbations.

(b)

FIG. 2. (Color online) How HCRB(6) of Eq. (3) and HCRB(¢) of Eq. (4) vary
with oa./A = 04,/ 7 and 6a; /4 at SNRegr = 1000, 0 = 45°, and ¢ = 60°.
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The following qualitative trends may be observed:

@) The effects of the sensors’ dislocation projected onto
the wavefront—HCRB(0) decreases (i.e., improves)
with an increasing @, which corresponds to the sen-
sors’ dislocation projected onto the incident wavefront
(i.e., perpendicular to the incident direction). Such pro-
jected dislocations would enlarge (over the sensors’
random dislocation’s “probability space” as a whole)
the array’s effective aperture with respect to the wave-
front. Hence, HCRB(0) improves as a| increases.

(i)  The effects of the sensors’ dislocation projected onto
the incident signal’'s propagation direction—Both
HCRB(0) and HCRB(¢) increase (i.e., worsen) with a
larger a, , which corresponds to the sensors’ disloca-
tion projected perpendicular to the incident wavefront
(i.e., onto the incident wavefront’s incident direction).
Therefore, a; would not enlarge/contract the array’s
effective aperture along the wavefront. Instead, a,
represents the sensor dislocation’s nuisance effects in
the hybrid Fisher information. Hence, HCRB(0)
increases (i.e., worsens) as a | increases.

(iii))  The effects of the sensors’ dislocation projected onto
the circle’s horizontal aperture—Counterpart to point
(i) above: HCRB(¢) decreases (i.e., improves) with a
larger a, ,, which corresponds to the sensors’ disloca-
tion projected onto the circular array aperture (i.e.,
the x—y plane).

(iv)  The effects of the sensors’ dislocation projected verti-
cally in perpendicular to the circle’s aperture—The
0. term (which is present in ¢ and a,) is absent in
ayy. Hence, the sensors’ vertical dislocation along the
z axis (i.e., in perpendicular to the circular array’s
aperture) cannot improve HCRB(¢) through a,,, but
can only degrade HCRB(¢) through a; due to the
nuisance-parameter effect mentioned in point (ii)
above.

(v) The effects of SNR.—Both HCRB(0) and
HCRB(¢) expectedly decrease (i.e., improve) with
an increasing SNR.s, with all other parameters
remaining the same. Furthermore, SNR.¢ amplifies
the positive effects of the sensors’ dislocation dis-
cussed above under points (i) and (iii), but dimin-
ishes the negative effects of the sensors’ dislocation
discussed above under point (ii).

(vi) Both HCRB(f) and HCRB(¢) decrease (i.e., improve)
with a larger 7(R/2)?, which is the circular array’s
wavelength-normalized aperture area. However, the
array’s physical aperture affects the two HCRBs
somewhat differently:

(vi-a) The circular aperture (of wavelength-
normalized radius R/2) raises HCRB(0) only
through (R/2)cos(0), which represents the
projection of the array’s physical aperture onto
the z axis, against which the polar direction-of-
arrival (0) has been defined.

(vi-b) The circular aperture raises HCRB(¢) only
through (R/A)sin(f), which constitutes the
projection of the array’s physical aperture onto
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the x—y plane, on which the azimuthal direc-
tion-of-arrival (¢) is measured.
The incident source’s direction-of-arrival affects the
HCRBs also through points (i) and (ii) above.

(vii) Both HCRB(#) and HCRB(¢) are inversely propor-
tional to the number (L) of sensors comprising the cir-
cular array, with all other parameters kept constant.
This trend is anticipated, as a larger aperture facili-
tates a finer resolution of the arrival direction. Indeed,
as L — oo, HCRB(0) and HCRB(¢) both converge
to zero.

IV. HCRB FOR SENSOR DISLOCATION WHOSE

STATISTICAL VARIANCE IS SPATIALLY ISOTROPIC
Here, 07 = 03, = 03. = 03. Then, Egs. (3) and (4) sim-

plify to

2
11 o\ 2 <I;> cos2(0)
HCRBsame (0) =7 2 (TA> + 2
LSNRet A OA
2SNResr - +1
2eos(0)]
1 R
L P cos~ 7 )
L 1+0a
1 csc2(0)
HCRBsame(d)) - LSNReff R 2
. ()
2 <_> + ; 2
;u O’A
2SNR.s¢ - +1
2(p) ]
_ sec Ga+ ] ’ ©)
1 A
where
2
- R
R:= SNR <I> , (7
OA 2
G 2SNRuy (7> . ®)

As 0}, = 03, = 05, = 03, both a, and ¢ in Eq. (3)

“collapse” into the same entity of g, in Eq. (5), even
though @ and a, produce opposing effects on HCRB(0).
[Recall from points (i) and (ii) in Sec. III that HCRB(0)
decreases (i.e., improves) with a larger a| but with a smaller
a,.] This accounts for the non-monotonic dependence on
g in Fig. 3.

Similarly, both a,, and a, in Eq. (4) here “collapse” into
the same entity of 6, in Eq. (6), even though a, and a| pro-
duce opposing effects on HCRB (¢) as discussed in points (ii)
and (iii) in Sec. III. Indeed, if L cos?(0) HCRBgume(¢h) is
plotted in a 3D graph against R and &,, then that graph
would look exactly the same as Fig. 3 with R replacing
R cos?(0).
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FIG. 3. (Color online) How
degrees of freedom.

LHCRB;p(0) of Eq. (5) varies with its two

If all sensors are perfectly positioned at their nominal
locations, ai = 0, Egs. (5) and (6) would then degenerate to

1 R\’
N 2
HCRB(6) [SNRL ( }h) sec?(0), 9)
1 (R\’
HCRB(¢) ~ IS NR (x) csc?(0). (10)

These asymptotic expressions in Egs. (9) and (10) agree
with Egs. (27) and (28) of Ref. 15 and Eq. (1.149) of Ref. 61
(p. 43).%2

If ai — 00, the sensor mislocations become infinite,
then HCRB(0) and HCRB(¢) both would become zero. This
surprising trend is due to the theoretically infinite aperture
thus realized.

HCRBsame (9) - HCRBZD (9)

1 R cos*(0) — sin2(0)(1 +a4a) (1 + sin2(0)6A)

V. HCRBS IF 64, =0,,=04 BUT 6,,=0

If Gir = aiv = g5 but 65 = 0, the sensors’ dislocation
would be limited to only the circle’s Cartesian plane and
would have no vertical component.63 Then, Egs. (3) and (4)
simplify to Egs. (11) and (12), respectively,

SNR;}
(R/7)*cos*(0)

2
1+2SNRy (”—f) sin2(0)

LHCRB,p(0) =

sec2(0)
= 2 11
- 7 ; (1D
G
A 1+6sin?(0)
N
LHCRB:p(¢) = 5 SNRgrcse”(0) 5
2<6A) (R/7)
I on) 2
1 + 2SNR (TA) sin2(0)
csc2(0)
= - . 12
Ga L R (12)
GaL_
A 1 + 64 sin’0

The denominators are the same in Egs. (11) and (12).

Perhaps surprising to some readers, 3D sensor disloca-
tion could improve the HRCB of 6 over 2D dislocation.
That is, HCRBgme(6) < HCRB,p(6), for some G > 0.
The proof follows:

L cos2(0)

(6’A + ?ﬁ sin(0) —|—Ié) (6’A + 6% +R 0052(0))

(13)

The denominator in Eq. (13) is obviously positive for all 0, G, R. Define the numerator as go(Ga). Observe that

d
daa

——gp(5a) = —sin?(0) (1 + sin®(0) + 25in*(0)G4) < O,

Yaa.

Hence, g¢(6A) is monotonically decreasing in 6. Furthermore, g9(G4) = 0 has non-negative real-valued roots at 65 = 0 and

_ sin(20)1/cos2(0)(1 + 4R) — 1 — sin%(0)
A= 4sin>(0) '

Therefore, HCRB,p(0) > HCRBgyme (0) for all 0, R and only for all

- sin(20) \/COSZ(B)(I +4R) — 1 —sin*(0)
45in’(0) '

OA

Furthermore, HCRB;p (0) = HCRBgyme (0) if 7 equals the threshold.
As for the HRCB of ¢, 3D sensor dislocation is always worse than the 2D case. That is, HCRBgyme(¢))

> HCRBp(¢),Vaa > 0. The proof follows:
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HCRBsame(¢) - HCRB2D(¢)
1 R cot?(0)G

=77z Z 7= ; - =) (14)
L(Go+63+R)(Ga+sin*(0)54+R)
which is positive for all G4 > 0, Ié, 0. Furthermore,
lim [HCRBgme(¢p) — HCRBap(¢)] = 0
TA—0OQ
= HCRBgme(¢p) — HCRByp(p) as aGa — oo.

VI. MAP ESTIMATION VERIFIES THE DERIVED HCRBs

The HCRB is approached by MAP estimation, asymp-
totically as the effective signal-to-noise power ratio [SNRe
:= M(2n0o,/0,)*] approaches infinity and as sensor disloca-
tion g/ approaches zero. (Please see Sec. IV, p. 2079 of
Ref. 64.) Monte Carlo simulations in this section will indeed
show this agreement with the HCRB expressions derived in
Egs. (3) and (4), thereby verifying the correctness of the
derivation.

The MAP estimate maximizes the posterior probabil-
ity density function of [0, ¢, A], given the observation z. A
is defined in the Appendix. The following develops the
MAP estimator given the statistical model of the sensor
dislocation, the signal, and the noise of Sec. II. This data’s
posterior probability function equals

p(@, b, A|i) O(p(i’ 0,9, A) :p(i|97 b, A)p(A),

where

p(z|0,¢,A) = ﬁexp {—[i —s®@a'T 'z s ®a]}

refers to the conditional probability density of Z conditioned
on (0, ¢, A), and

L 1 ~A? /2%
p(A) — = R4 Ax
- - 2
=1 4/2n0%,
L ] A’ 262
X I | e /2%
2
=1 27wAy

denotes the prior probability density function of A. Hence,
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p(0,¢,A|Z) < p(z,0,$,A)
= p(z|0, ), A)p(A)

:ﬁexp{f[i *S®3]Hril[i *S®a}}

—3L/2 _
x (2m) (0AxTAyOA:) "

L 2 2 2
1 AX/* A}'f AZ;:

X exp{ — 3 >t 1+
=1 \9Aar %Ay Oa:

-3L/2

(aTa0n)

Therefore, the MAP estimate equals
(0.4.4)

= argmax p(z[0, , A)p(A)

(0,¢.4)
[ H
=argmin{ —[Z —s®a]’'[Z —s® al
0.6.4) | %n
1< (A2 A2 A
MDD o= =g B (1s)
2 /=1 OAx GAy OA;

This MAP estimation is Monte Carlo simulated,
with the resulting root-mean-square error (RMSE) plotted in
Figs. 4 and 5. Here, each icon represents N =3000 statisti-
cally independent Monte Carlo experiments, each involving
M =100 snapshots. The circular array consists of L =40
identical isotropic sensors, nominally spaced uniformly at
half-wavelength inter-sensor spacing on a circle of
wavelength-radius R/A = ycsc(n/L). The incident signal
has a frequency of f=0.25, a wavelength of 1=0.0344, an
initial phase of y =0.237%, a power of af =1, an incident

-

RMSE

OA

A

FIG. 4. (Color online) The MAP estimates approach the HCRB(0) of Eq. (5)
and the HCRB(¢) of Eq. (6) as the sensor dislocation variance (o, / ).)2 — 0.
There exist M = 100 snapshots in each Monte Carlo trial.
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107"

10° 10° 102 108
M : Number of snapshots
FIG. 5. (Color online) The MAP estimates approach the HCRB(0) of Eq. (5)

and the HCRB(¢) of Eq. (6), as the number M of snapshots increases. Here,
aa/A = 1/100.

polar angle of 6 = 25°, and an incident azimuth angle of
¢ = 43°. The additive noise has a power of ¢> = 1. The

RMSE is defined as \/(1/N) SV (0, — 0)* for 0, and

\/(1/N) 221:1 (¢, — $)* for ¢. Figures 4 and 5 clearly
show that the MAP estimates approach the derived HCRBs
especially at the asymptotically small o5/4 or with asymp-
totically large number (M) of snapshots.

Vil. CONCLUSIONS

This paper presents the open literature’s first rigorous deri-
vation of any HCRB for azimuth-elevation direction-of-arrival
estimation with a circular array of identical isotropic sensors
that are nominally uniform in spacing but actually dislocate
randomly. This derivation leads to some surprising qualitative
insights: (a) The incident source’s polar-arrival-angle HCRB is
enhanced as the sensors become more dislocated along the
wavefront due to aperture enlargement over the stochastic
dislocation’s probability space. (b) Likewise, the azimuth-
arrival-angle’s HCRB is improved as the sensors become nore
dislocated on the circular array’s plane, also due to aperture
enlargement. (c) In contrast, sensor dislocation along the inci-
dent signal’s propagation direction can only worsen the
HCRBs, due to nuisance-parameter effects in the Fisher infor-
mation. (d) However, sensor dislocation orthogonal to the
circular array’s plane must degrade the azimuth-arrival-angle
HCRB but could improve the polar-arrival-angle HCRB.

APPENDIX: DETAILED DERIVATION OF THE HCRBs
1. To formulate the hybrid Fisher information matrix

Group all 2+ 3L unknown scalars into a (24 3L) x 1
vector of &:=1[0,¢, A]", in which A= [A,, A, ..., A,
Ay, ... Ay, A .. A, ] contains all the nuisance parame-
ters, which also happen to be stochastic.

The probability density function of z, conditioned on A,
equals

p(E|A) = ﬁexp{—[i ~ /T - A,
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which has a statistical conditional mean equal to the LM x 1
vector of

1= E;a[z|A]
=s®a+ E[n]
=s®a,

and a statistical conditional covariance matrix equal to the
LM x LM matrix of

I' = cov(z|A)
= Exa{[z — [z — "}
= Elan"]

_ 2
= O'nILMxLMa

where I symbolizes an identity matrix of the size indicated
in its subscript.

For the above conditional probability density, the hybrid
Fisher information matrix equals (please see Eqs. 8.49-8.57
in Ref. 65)

Js =Jp +Jbp, (A1)
where Jp is a (BL+2) x (3L +2) matrix corresponding to
the a priori knowledge on the sensors’ dislocation statistics,
whereas Jp is a (3L 4 2) x (3L + 2) matrix corresponding to
the a posteriori information embedded in the measured data.
The (i,j)th entry equals

?Inpa(A)

[JP],’I,' - *EA [ aé,aéj 5 (AZ)

[JD],‘J = _Ei,A

O*np(z|A)
9¢;:0¢;

O*np(z|A
- o [Ct)

}, (A3)

where &; denotes the ith entry of the vector &, and pa(A) sig-
nifies the prior probability density function of A.

2. To derive Jp

Recall that A is Gaussian with a zero mean and a covari-
ance matrix of I'y = diag(a%“ILxL, ainbe O‘izILXL)’ where
diag(-) symbolizes a diagonal matrix with its diagonal entries
listed inside the parentheses.

Hence, Eq. (A2) becomes

(020 02 0251 025,
1
O0ro — I Ok 0rxr
OAx
_ 1
Tr Orx2  Opxr I Opsr (A4)
Ay
1
Or2  Opxr 0 — I
L O-Az
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3. To derive Jp

From Eq. (A3) (see Egs. 8.23-8.34 in Ref. 65),

As I' is independent of &, the trace term drops out above. Hence,

8;1H71 ou 2 ou\" [ op

hiji=

[JD]&[._@/. = EA . (AS)

Uplz.e = Ea

The following will express Eq. (A6) explicitly in terms of the parameters of the models in Sec. II.

a. Deriving the partial derivatives

The partial derivatives in Eq. (A6) are given by

g«g _ 2/171 {R cos(e)cos<¢ _ Z”(fL—l)) + cos(0)cos(P) Ay, + cos(0)sin($)A,, — sin(G)AZJ ;
Oy _ 2m [—R sin(0)sin (qﬁ —~ M) — sin(0)sin(¢)Ay, + sin(9)005(¢)Ay£] :

op L

;Zi _ %Sin(e)cos(qs),

E?Zf[ - 7s1n(0)sin(q§),

s~ =0

ai/[ aaAN 68Ayfm —0 mrt

2n(0 —1)

i3 ) —sin(0)sin(¢)A,, + sin(@)cos(¢>)Aﬂ,] el

a
AW 21 . .
—> e =i [—R sin(0)sin ((l) —

ve = an sin(0)cos(¢)e’™,

9, ) e =j 2}“ sin(6)sin(¢)e,

L

QO
B|=
I
TN N N TN N
ISR
2=
N—
.

OA., _OA, oA, 0 Tm7L
Thus,
i (R cos(0)cos(¢) + cos(0)cos(p)A,, + cos(@)sin(q{))Ayl — sin(@)Azl)e/7"
<R cos(0)cos (d) - 27T> + cos(0)cos(p)A,, + cos(@)sin(rf))Ay2 - sin(@)Ah) e
ou Oa 2n L
00~ "% a0 ST : :
(cos(@) (R cos (d) - w) + cos(p)A,, + sin((j))AyL) - sin(@)AZL> el
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(=R sin(0)sin(¢) — sin(0)sin(¢)A,, + sin(0)cos(¢p)A,, )&/
o oa P <—R sin(0)sin (q5 — 2L_n') —sin(0)sin(¢)A,, + sin(@)cos(qﬁ)A),2>ef7"2
a6~ "Yog T ; |
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ZZ =s® g—z _jZ;Ln ,s @ [sin(0)cos(¢), sin(0)sin(¢), cos(0)] © diag[e™, e, ..., e/ ].

b. Deriving h; j
Using Eq. (A6),

L 2
hog = 4Mf;2§n2 Z{ cos(0) {R cos <q5 — 2n(¢ — 1)> + cos(¢)A,, + sin(d))Aw} - sin(H)AZ[} ,
)

= L
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L 2
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L =1

ho s = 4M;f7r2 [sin(@)cos(d)), sin(0)sin(¢), cos(@)]
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c. Obtaining the entries of Jp

Using Eq. (A6),
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(A7)
4. To express the HCRBs explicitly in terms of the data model parameters
Returning to Eq. (Al),
. — G B A8
DB Walaa | (A8)
where G is defined in Eq. (A14), [J5] A 18 defined in Eq. (A7) and
B:= [Uolpa [Uolpal” (A9)
2 cos(0)cos(¢p), ..., cos(O)cos <¢ — M)
= 8Ma’R (;ﬂ ) [ sin(0)cos(p) sin(0)sin(¢) cos(0) | ® 5 (If D
! —sin(0)sin(¢), ..., —sin(0)sin (qS - nL_)
(A10)

Note that G is 2 x 2, B is 2 x 3L, and [Jp], , is 3L x 3L.

The HCRBs of  and ¢ equal the first two diagonal entries of J;'. The 2 x 2 upper left submatrix of J;' equals [see Eq.

(2.3) on p. 120 of Ref. 66]
(G - B[Js],aB") ",

with

G 0

— BJ3\BT = Md2L
G [JB]A,A Oy [0 8

where {; and {, are defined in Eqs. (A15) and (A16), respectively.
These lead to the HCRBs of 0 and ¢ as stated in Egs. (3) and (4), respectively,
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