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ABSTRACT

Source direction-of-arrival estimation problem has received much attention in recent years
following its significant role in array-signal processing and wide range of applications such
as radar, wireless communication, sonar, seismology among others. Direction finding has
been solved by several techniques such as Maximum likelihood estimator, MUltiple Signal
Classification, Estimation of Parameters via Rotational Invariance Technique and Cramér-
Rao bound using array of sensors in both uniformly-spaced and non-uniformly-spaced.
The sensors have further been arranged in different geometric patterns ranging from one-
dimension to three-dimensional. However, little effort has been made in direction finding
using concentric planar arrays with fixed centers at the Cartesian origin. In this study, a
new planar sensor-array geometry (the 2-circle concentric uniform array geometry) cen-
tered at the Cartesian origin, that maximizes the array’s spatial aperture mainly for bivari-
ate azimuth-polar resolution of direction-of-arrival estimation problem was proposed. The
proposed geometry provides almost invariant azimuth angle coverage and offers the ad-
vantage of full rotational symmetry (circular invariance) while maintaining an inter-sensor
spacing not exceeding half wavelength (for non-ambiguity with respect to the Cartesian
direction cosines) among other advantages. The study adopted Cramér-Rao bound tech-
nique of direction finding via a uniform circular array (single ring array) and the proposed
geometry to estimate the bivariate azimuth-polar angles-of-arrival. Both the array mani-
folds and the Cramér-Rao bounds for the uniform circular array and that of the proposed
array grid were derived. Further, a better-accurate performance in direction finding of the
proposed array grid over that of the single ring array grid was analytically verified under
different constraints of investigation. It was found that the proposed sensor-array geometry
has better estimation accuracy than a single ring array and the 2-circle concentric uniform
array geometry would have the best estimation accuracy for minimal number of sensors
hence reducing the hardware cost. The study therefore recommends that the 2-circle con-
centric uniform array geometry should be used for direction finding with minimal number
of sensors and with an inter-sensor spacing not exceeding half a wavelength as opposed to
a uniform circular array geometry.

x



CHAPTER ONE

INTRODUCTION

1.1 Background Information

Problem of estimating angle-of-arrival (AoA) of a plane wave (or multiple plane waves)

is commonly referred to as direction finding (DF) or direction-of-arrival (DoA) estimation

problem [5]. It finds its application in radar, medical diagnosis and treatment, electronic

surveillance, radio astronomy [40], position location and tracing systems [63]. This is be-

cause it is a major method of location determination, in security services especially by

reconnaissance of radio communications of criminal organization and in military intel-

ligence by detecting activities of potential enemies and gaining information on enemy’s

communication order [12]. Due to its diverse application and difficulty of obtaining the

optimum estimator, the topic has attracted a significant amount of attention over the last

several decades.

Several techniques exist to address the problem of estimating azimuth-polar AoA of multi-

ple sources using the signal received at the array of sensors [21]. Some of the already used

methods of DF are: Maximum likelihood estimator (MLE) [6], MUSIC (MUltiple SIgnal

Classification) which is a highly popular eigenstructure-based direction-of-arrival estima-

tion problem method applicable to a non-uniformly spaced array of sensors [3], ESPRIT

(Estimation of Signal Parameters via Rotational Invariance Technique) [4], Cramér-Rao

Bound (CRB) which has been found to be the most accurate technique in DF and the sim-

plest due to its simplicity in computations [10], and other techniques. The knowledge of

a reference signal or direction of the desired signal source is required in the application of

array processing to achieve its desired objectives.

Antenna array are widely used to solve direction finding problem. For instance, in radar

application, the antenna array are useful for air-traffic control and target acquisition. They

have been used by intelligence agencies for covert location of transmission and signal in-

terception. For example, in airport surveillance to determine the range, an electromagnetic

pulse that is reflected by the aircraft is transmitted, causing the echo to be received by
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the antenna after seconds [63]. In wireless communication, DoA estimation may signif-

icantly improve efficiency in communication and network capacity, support and enhance

location-aided routing, dynamic network and different types of location-related services

and applications [57].

In sonar, in which the interest is the position of a target, such as submarine, the target radi-

ates noise due to machinery on board, propeller action, etc. This noise which is actually the

signal of interest propagates through and is received by array of sensors. The sensors’ out-

put are then transmitted to tow ship for input to a digital computer. Because of the sensors’

positions, relative to the arrival angle of the target signal, the signal is received in speech

processing systems. A particularly important problem is speech recognition which is the

recognition of speech by a machine (digital computers) [1]. For example in recognizing

individual speech sounds or phonemes (i.e vowels, consonants etc).

Furthermore, the direction-of-arrival (DoA) estimation problem has been widely discussed

in both uniformly-spaced and non-uniformly-spaced isotropic sensors. The aim of DF is

to estimate azimuth(φ)-polar(θ) angles of arrival [38], which are respectively measured

counterclockwise from the positive x-axis and clockwise from the positive z-axis with,

φ ∈ [0, 2π) and θ ∈
[
0, π

2

]
[77]. The sensors are arranged in different geometric pat-

terns mainly to improve the estimation performance in which the geometric patterns in-

clude: Uniform linear array (ULA), uniform circular array (UCA), uniform rectangular

array (URA) [5], regular tetrahedral array, collocated triad of orthogonal dipoles [77], and

L-shaped 2-dimensional array [7], [66]. Notably, signal impinging/arriving on sensors is

usually affected by noise (undesired random disturbances) which lower accuracy and pre-

cision of estimation of the signal’s parameters. The noise could be caused by undetected

variations in temperature, pressure, humidity etc. Noise can also occur as a result of impre-

cision of sensors’ components [57].

Of all the array geometries, circular and concentric circular arrays alone provides almost in-

variant azimuth angle coverage and offers full rotational symmetry about the origin, thereby

realizing azimuthal invariance (with the azimuth defined on the circular plane) as well as

increasing array’s spatial aperture [24, 17, 13, 27, 39, 62, 9, 18] . Furthermore, a sensor-

array’s spatial resolution in the azimuth and elevation, increases with the size of the array’s

aperture. As evidenced in [42, 41, 43, 2], recent research has focused on strategies to en-

large this aperture without additional sensors. However, one difficult on widening array’s

aperture is to avoid side and grating lobes in beam-forming and and also to avoid cyclic

2



ambiguities in direction finding [32, 20, 9, 8, 11]; these problems would be encountered if

the inter-sensor spacing exceeds half a wavelength, thereby violating the spatial version of

the Nyquist sampling theorem. This now raises two alarming questions that, could a two-

ring array geometry have better-accurate estimation performance in direction finding

than a single ring array geometry? If true then, how may the circular array aperture

be widened without additional (isotropic) sensors while maintaining the inter-sensor

spacing not to exceed half-wavelength? Answering these questions will display effec-

tiveness and accuracy of using the two-circle concentric uniform array geometry over the

single ring array geometry in direction finding via the Cramér-Rao bound. Thus, the study

proposed a new planar sensor-array grid termed as 2-circle concentric uniform array ge-

ometry or concentric uniform circular array (CUCA) geometry centered at the Cartesian

origin, that maintains an inter-sensor spacing of ≤ half a wavelength (to avoid ambiguity

in the estimated direction-of-arrival), that provides almost invariant azimuth angle cover-

age and retains the advantage of full rotational symmetry, and that maximizes the array’s

spatial aperture, with only little/no increase in the number of sensors. The inter-sensor

spacing here was equal to 2RUCA sin
(

π
LUCA

)
, where LUCA and RUCA denotes the number

of isotropic sensors on the circumference of a circle and the radius respectively. As a result,

the study presented derivation of the array manifolds and the Cramér-Rao bounds for both

the proposed array grid and that of the single ring array and finally compared the perfor-

mance of the proposed array grid to that of a single ring array grid in direction finding.
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1.2 Statement of the Problem

The concept of direction finding (DF) has been extensively discussed on both uniformly-

spaced and non-uniformly-spaced isotropic sensors. These sensors have been arranged

in different geometric patterns which are either one-dimensional (1-D), two-dimensional

(2-D) or three-dimensional (3-D). Some of the already discussed and existing array of sen-

sors include: orthogonal L-shaped array of sensors, regular tetrahedral array of sensors,

uniform linear array (ULA) of sensors, uniform rectangular array (URA) of sensors and

uniform circular array (UCA) of sensors. Array manifold vectors for the above mentioned

array of sensors have been derived together with their corresponding Cramér-Rao bounds

under the underlying dimensions (1-D, 2-D or 3-D). Furthermore, as evidenced in [64],

[77], [10], [6], [5], [3], studies have drawn much attention on direction finding using differ-

ent methods such as MLE, MUSIC, and ESPRIT in comparison to the Cramér-Rao bound

(CRB) technique under different geometric patterns of sensors. Their general conclusion

has been that, the Cramér-Rao bound method is the most accurate for it provides a lower

bound on the accuracy of any unbiased estimator. However, very scanty literature is avail-

able on DF using concentric planar array of sensors with fixed centers at the Cartesian

origin. For instance, little effort has been made in introducing these arrays, but whose

centers are not fixed and are not necessarily centered at the Cartesian origin. Due to this

therefore, a new planar sensor-array grid termed as the two-circle concentric uniform array

or the concentric uniform circular array (CUCA) geometry offering the aforementioned ad-

vantages was proposed . Hence with reference to the already existing array manifolds and

Cramér-Rao bounds for both uniformly-spaced and non-uniformly-spaced geometric array

of sensors, derivation of both the array manifolds and the Cramér-Rao bounds for uniform

circular array and the proposed geometry both lying on the x-y plane (planar) and centered

at the Cartesian origin were presented and further, fundamental analysis of the Cramér-Rao

bounds for the proposed array grid under different constraints of investigation and compar-

ison of their performance was carried out. The results of the study would provide a deeper

understanding as well as extension of knowledge for the concept of direction finding using

concentric arrays to their somewhat counter-intuitive terms of concentric planar arrays with

fixed centers at the Cartesian origin.
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1.3 Justification of the Study

As aforementioned, little effort has been made in introducing concentric planar array of

sensors whose centers are not fixed and are not necessarily centered at the Cartesian origin,

as evidenced by the scanty literature available about these planar arrays with fixed centers

at the Cartesian origin. Thus, a need cropped up to conduct a study. In this study, a new

sensor-array geometry was proposed. Results of the study would equip and benefit direc-

tion finders such as seismologists, security officers, electronic surveyors, medical diagnosis

doctors among others, to improve on direction finding.

1.4 Objectives of the Study

1.4.1 Main Objective

The broad objective of the study was to compare the performance of uniform circular array

and a two-circle concentric uniform array geometries in direction finding.

1.4.2 Specific Objectives

The specific objectives of the study were:

(i) To find array manifolds for a uniform circular array and a two-circle concentric uni-

form array geometry,

(ii) To derive Cramér-Rao bound for azimuth-polar angles-of-arrival using uniform cir-

cular array and a two-circle concentric uniform array, and

(iii) To give fundamental analysis of Cramér-Rao bound for the two-circle concentric

uniform array geometry under different constraints of investigation.
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1.5 Significance of the Study

The study results aims at giving an insightful understanding of the concept of direction

finding (DF) using planar concentric arrays as well as setting an avenue for further research

in a new but closely related area of two-circle concentric uniform array.
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CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

This chapter presents a review of related literature on the concept of direction finding (DF).

This is done in several sections which discuss review on circular arrays of sensors, the ad-

vantages of circular arrays over the other geometric patterns, the concept of array manifold,

mathematical data model, unbiased and biased estimators, minimum variance criterion and

the Cramér-Rao bound as a technique of direction-of-arrival (DoA) estimation problem

which was used in this project. Moreover, some existing results for the above mentioned

sections are also presented.

2.2 Review on a Uniform Circular Array (UCA) of Sensors

The uniform (single-ring) circular array has been investigated for direction finding using

different algorithms such as MLE, MUSIC, ESPRIT, CRB in [5, 46, 48, 49, 50, 17, 53, 54,

24, 59, 29, 32, 68] . The corresponding Cramer-Rao bound has been derived in closed-form

in [1, 10, 64, 69], but only in an open form in [44, 56, 61, 64, 67, 70], and only plotted (but

not derived) in comparison to the other algorithms in [3, 45, 47, 50, 57, 58, 74, 78]. Here,

the overall conclusion has been that, the Cramer-Rao bound is the most accurate algorithm

giving the most accurate estimates in direction finding.
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2.3 Advantages of Circular Arrays Over the Other Geometric Pat-

terns

As evidenced in [9, 13, 18, 39, 29], the circular arrays are the most advantageous geometric

patterns used in direction finding over the other aforementioned geometric pattern. Some of

these advantages include: They provide almost invariant azimuth angle coverage, they are

flexible in array pattern and design, they offer full rotational symmetry and they can yield

invariant array pattern over a certain frequency band for beam-forming in 3-dimensions.

Notably, since concentric arrays are still circular, they also enjoy the above mentioned

merits.

2.4 The Concept of Array Manifold

Array manifold vector also known as the steering vector is the set of array responses of a

signal or the data received on the array from incoming signal for all azimuth-polar angles.

The array manifold is the locus of all array response vector (manifold vector) and maps the

geometrical aspects of the array system to the signal environment. Findings in [51] have

indicated that the array manifold vector plays a key role of modeling the response of an

array of omni-directional elements in the case of unity powered signal impinging on the

array from direction (θ, φ), with respect to the array reference point and the chosen system

of coordinates. It should be noted that an assumption of the plane wave propagation is

made for the derivation of manifold vector.

In order to estimate any parameter of a signal, knowledge of array manifold is key. De-

pending on the pattern of the sensor-array used, array manifold vector varies. The array

manifold vector can be in 1-dimensional (1-D), 2-dimensional (2-D) or 3-dimensional (3-

D) depending on the geometric pattern of the sensors.

From [10], the following examples of array manifolds for linear and circular arrays, are

given respectively. For simplicity, we suppose that the antennas and the emitters are on the

same plane so that the array manifold can be characterized by polar angle only.

Linear Array: Consider a linear array with M omni-directional antenna elements sepa-

rated by distance of dm, from a common reference point in the array. Suppose θ is the

direction measured from the line perpendicular to the array. Then, the array manifold is

8



given by

a(θ) =


exp

{
j
2πd1
λ

sin(θ)
}

exp
{
j
2πd2
λ

sin(θ)
}

...

exp
{
j
2πd

M

λ
sin(θ)

}

 .

Where λ is the signal’s wavelength and j =
√
−1.

Circular Array: Consider a circular array with radius R and M antenna elements. For

omni-directional elements, the array manifold is given by

a(θ) =


exp

{
j 2πR

λ
sin(θ − θ1)

}
exp

{
j 2πR

λ
sin(θ − θ2)

}
...

exp
{
j 2πR

λ
sin(θ − θM)

}

 ,

where θi (for i = 1, 2, · · ·M ) are the element angles relative to the center of the circle.

2.5 Mathematical Data Model

The observed data vector for any particular geometric pattern would be given by z =

as(m) + n(m) for m = 1, 2, 3, · · · ,M where a is the array manifold vector, s(m) is the

incident signal, n(m) is additive noise and m is the time instant.

Signal arriving on a sensor array are usually affected by noise which lower the accuracy

and precision of estimation of signal’s parameters. The noise in most receiving systems

consists of internal and external noise [57]. The external noise is defined as an unwanted

random disturbances that is intercepted by the sensors while internal noise is produced by

the electronic devices and includes thermal noise and weak versions of other signals in the

system such as clocks and oscillators. If the system is designed well, such that the antennas

are free of mutual coupling, and it is assumed that the thermal noise is dormant, a good

model for the noise is white Gaussian noise with covariance matrix of σ2
nI, where σ2

n is the

noise power, and I is an identity matrix.

Results in [64], [77] have shown that, suppose an array of L number of isotropic sen-

sors is separately located in space. Denote the `th sensors’ three-dimensional location as

9



(x
`
, y

`
, z

`
). Consider an incident signal of wave-length λ, impinging upon the array from a

polar angle of θ ∈
[
0, π

2

]
, measured from the positive z-axis in the clockwise direction and

an azimuth angle of φ ∈ [0, 2π), measured from the positive x-axis in the counterclock-

wise direction. To this incident signal, the array response may be defined by an L× 1 array

manifold whose `th entry equals

[a]
`

= g
`
exp

{
j
2π

λ
[x

`
sin(θ) cos(θ) + y

`
sin(θ) sin(θ) + z

`
cos(θ)]

}

∀ ` = 1, 2, · · · , L.

The L sensors together would produce the below L × 1 snapshots at any discrete-time

instant m:

x(m) = σsas(m) + n(m)

where {s(m) ∀ m} represents the incident signal and {n(m) ∀ m} denotes the additive

noise. The incident signal is pure-tone complex-valued defined by, s(m) = σs exp {j(2πfm+ ϕ)}

where the frequency of f and the phase of ϕ are prior known, whereas the amplitude of

σs is unknown but deterministic. The additive noise [n(m)]` is circularly complex-valued

Gaussian, with a mean of zero and a variance of σ2
n, spatio-temporally white over both `

and m, hence a spatial correlation of Γn = σ2
nIL.

Based on M number of snapshots {x(m),m = 1, 2, · · · ,M}, the aim of direction-finding

problem is to estimate (θ, φ), which are modeled as deterministic constants. The data’s

distribution is normal/Gaussian with a mean of

µ = E[x] = s⊗ a

and a covariance matrix of

Γ = σ2
nI(LM×LM).

Here, ⊗ denotes the Kronecker product, and E[·] represents statistical expectation of the

entity inside the square brackets.

Furthermore, if a narrow-band source could be emitting a signal s(t) of wavelength λ in the

direction of array ofM co-planar sensors, then the far-field source could be seen at antenna

array under DF angle of θ restricted to [−π, π] with respect to the x-axis measured in the
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clockwise direction. The array output at time instant t could be given by

z(t) = a(θ)s(t) + n(t),

where t = t1, t2 · · · , tN , is a scaled and noise-corrupted replica of the DoA-dependent

Array Response Vector (ARV) a(θ) [34]. The ARV is an extension of the array steering

vector that incorporates gain of the sensors. The purpose of the snapshots (z(t)) , t =

t1, t2 · · · , tN is to estimate the parameter θ using a variety of techniques. The following

statistical properties are often assumed about s(t) and n(t): s(t) and n(t) are independent,

n(t) is a zero-mean Gaussian distributed with a covariance E[n(t)nH(t)] = σ2
nI, for I

being M × M identity matrix and s(t) are assumed to be either deterministic unknown

parameter or independent zero-mean circular Gaussian distributed with variance of σ2
s .

2.6 Unbiased Estimators

Estimators are functions of sample observations used to estimate any unknown parameter

of interest [52]. The expectations are that, a good estimator should result in an estimate

value that is close to the true value of the parameter being estimated. An estimator is said

to be unbiased if on average, the estimator yields the true value of the unknown parameter

[1]. Since the parameter to be estimated may lie anywhere in the open interval a < φ < b,

unbiased estimator ascertains that no matter what the true value of φ is, the estimator will

definitely yield it on the average. Thus, unbiasedness serves as a measure of closeness be-

tween an estimator and the parameter. For instance, an estimator φ̃ is an unbiased estimator

of φ if the mean or expectation of φ̃ over all possible samples is φ. Mathematically, an esti-

mator is unbiased if E(φ̃) = φ, φ ∈ (a, b) where (a, b) denotes the range of possible values

of φ. On the other hand, biased estimators are ones that are characterized by systematic

errors, which presumably should not be present.

2.7 Minimum Variance Criterion

In order to obtain optimal estimators, we need to adopt some optimality criterion as evi-

denced in [1]. A natural one is the mean square error (MSE), defined as

MSE(φ̃) = E
[
(φ̃− φ)2

]
.
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This measures the average mean square deviation of any estimator from the true value.

However, it’s unfortunate that adoption of this natural criterion may lead to unrealizable

estimators, which cannot be written solely as a function of data. To understand the problem

which results, let’s rewrite the MSE as

MSE(φ̃) = E

{[
(φ̃− E(φ̃))2 + (E(φ̃− φ))

]2}
= V ar(φ̃) +

[
E(φ̃)− φ

]2
= V ar(φ̃) + b2(φ).

This implies that the MSE is composed of errors due to the variance of the estimator as well

as the bias [55], [1]. It would seem that any criterion which depends on the bias will lead

to unrealizable estimator. Although this generally holds, on occasion, realizable minimum

MSE estimator can be found by alternatively constraining the bias to zero and finding

the estimator which minimizes the variance. Such estimator is termed as the minimum

variance unbiased (MVU) estimator. The MVU commonly used is the Cramér-Rao lower

bound (CRLB) or just the Cramér-Rao bound (CRB). It should be noted that, the MSE is

just the variance [52].

2.8 The Cramér-Rao Bound (CRB)

The Cramér-Rao bound is a useful tool for assessing the accuracy of parameter estimation

method as it provides a lower bound on the accuracy of any unbiased estimator. Thus, for

any unbiased estimator φ̃ as indicated in [10], we have

MSE(φ̃) = V ar(φ̃) ≥ CRB.

The CRB provides an algorithm-independent benchmark against which various algorithms

can be compared.

In addition, the Cramér-Rao bound provides a lower bound to the estimation variance of

an unbiased estimator [77]. To find the CRB for estimating the azimuth-polar angles-of-

arrival, the inverse of Fisher information matrix (FIM) is computed. The Fisher information

matrix represents the way to measure the information about the parameter contained in the

observations or the amount of information that an observable random variable carries about

an unknown parameter [60], [22]. Moreover, the Fisher information matrix determines how

12



much information a measurement brings about the parameters that index the underlying

probability distribution for the measurement [63].

For a complex Gaussian data model vector, the (i, j)th entry of the FIM is be given by

[F(ξ)]i,j = 2Re

{[
∂µ

∂ξ
i

]H
Γ−1

∂µ

∂ξ
j

}
+ Tr

{
Γ−1

∂Γ

∂ξ
i

Γ−1
∂Γ

∂ξ
j

}
(2.1)

[15] where Re {·} symbolizes the real-value part of the entity inside the curly brackets,

Tr {·} signifies the trace of the contents inside the curly brackets and the superscript H

denotes the conjugate transposition [64], [5]. For instance, if we collect the two parameters

to be estimated as entries in a 2× 1 vector ξ := [θ, φ], the FIM will have a (k, r)th entry of

(2.1) and thus the FIM will be give by

F(ξ) =

Fθ,θ F
θ,φ

F
φ,θ F

φ,φ

 , (2.2)

where

F
θ,θ = 2Re

{[
∂µ

∂θ

]H
Γ−1

∂µ

∂θ

}
+ Tr

{
Γ−1

∂Γ

∂θ
Γ−1

∂Γ

∂θ

}
,

F
θ,φ = 2Re

{[
∂µ

∂θ

]H
Γ−1

∂µ

∂φ

}
+ Tr

{
Γ−1

∂Γ

∂θ
Γ−1

∂Γ

∂φ

}
,

F
φ,θ = 2Re

{[
∂µ

∂φ

]H
Γ−1

∂µ

∂θ

}
+ Tr

{
Γ−1

∂Γ

∂φ
Γ−1

∂Γ

∂θ

}
,

and

F
φ,φ = 2Re

{[
∂µ

∂φ

]H
Γ−1

∂µ

∂φ

}
+ Tr

{
Γ−1

∂Γ

∂φ
Γ−1

∂Γ

∂φ

}
,

where µ and Γ are the mean and the covariance matrix of the observed data model respec-

tively [38], [77].
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The inverse of (2.2) gives the 2× 2 Cramér-Rao bound matrix

CRB(θ) ∗

∗ CRB(φ)

 =

Fθ,θ F
θ,φ

F
φ,θ F

φ,φ

−1 ,
where ∗ refers to entries not of interest to the present research. Using the above approach,

CRB(θ) =
F
φ,φ

F
θ,θFφ,φ − Fθ,φFφ,θ

and

CRB(φ) =
F
θ,θ

F
θ,θFφ,φ − Fθ,φFφ,θ

.
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CHAPTER THREE

RESEARCH METHODOLOGY

3.1 Introduction

In order to complete the project successfully, solid background knowledge of DF was

very useful. Particularly, the Cramér-Rao bound algorithm of direction-of-arrival estima-

tion problem was used to estimate the unknown but deterministic bivariate azimuth-polar

angles-of-arrival.

3.1.1 Study Geometries

The Uniform circular array geometry (UCA)

Figure 3.1: A single ring array geometry with equal spaced isotropic sensors.

15



The 2-circle concentric uniform array geometry

Figure 3.2: A two-ring array geometry of equidistant isotropic sensors.

The UCA and the CUCA were both centered at the Cartesian origin denoted by O and

thus the origin was considered as the reference point. Moreover, finite number of isotropic

sensors arranged on the circumference of the circles with uniform inter-sensor spacing (not

exceeding half a wavelength) were used.

3.1.2 Softwares

The LATEX and the MAT-LAB softwares were used for typing the report (because of the

tricky-complicated equation encountered) and plotting comparative graphs respectively.

3.2 Objective 1: Array Manifold Vector Derivation

To derive the array manifolds for the UCA and the CUCA geometries, the following steps

were used systematically:

1. The Cartesian coordinates showing the general location of the sensors with respect

to x, y and z-axes were determined,
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2. Equation representing the set of observations received by the array of sensors with

respect to time, t, and the position vector, p was found. Notably, this observations

equation was in terms of time domain signal,

3. The time domain signal obtained in (2) above was converted into frequency domain

signal by taking the Fourier transform of the observations equation, and

4. Finally, the targeted array manifold vector was deduced from the newly formed fre-

quency domain equation in (3) above by simply adopting the complex part.

3.3 Objective 2: Derivation of the Cramér-Rao Bound

To derive the Cramér-Rao bound for both the uniform circular array and the concentric

2-circle array geometries, the below steps were systematically followed:

1. The array manifolds derived in objective (1) above were adopted,

2. The data model which shows the equation representation of the observed data vector

for any particular geometric pattern of sensors was formulated,

3. The Fisher Information matrix (FIM) which measures the amount of information that

a certain random variable carries about an unknown parameter was computed,

4. The inverse of the (FIM) was computed to obtain a Cramér-Rao bound matrix, and

5. Lastly, the required CRB(θ) and the CRB(φ) were deduced from the Cramér-Rao

bound matrix obtained in (4) above.

NOTE:The derivations for each step above are extensively discussed in chapter 4 for the

results.

3.4 Objective 3: The Fundamental Analysis

To give the fundamental analysis of the CRBs, different constraints of investigation (closed

equations showing the relationship between the number of sensors for both the UCA and

the CUCA geometries and also the relationship between the radii of the CUCA geometry)

were proposed and used. Further, comparison in performance in direction finding for the

UCA and the CUCA geometries was done by plotting comparative graphs of their CRBs

against the number of sensors and the radii using the MAT-LAB software.
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CHAPTER FOUR

RESULTS

4.1 Array Manifold Vector Derivation

In this section, the array manifold vector for the uniform circular array geometry is first de-

rived and further used to derive the array manifold vector for the proposed array geometry.

4.1.1 The Uniform Circular Array (UCA)

Consider a circle centered at the Cartesian origin and of radius RUCA. Suppose LUCA num-

ber of isotropic sensors are uniformly spaced on the circle’s circumference, as illustrated

in figure 4.1. The origin denoted by O was considered as the reference point. Further,

Figure 4.1: A uniform circular array of isotropic sensors.

considering the arrival of wave(s), say a plane wave(s) for example, then the wave(s) im-

pinge on O at an azimuth angle of φ and a polar angle of θ measured counterclockwise,
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and clockwise, from the positive x-axis and positive z-axis, respectively.

S1, S2, S3, · · · , SLUCA
were let to be points denoting location of an array consisting of a

set of the isotropic sensors. Furthermore, the sensors were unidirectionally arranged in

which the direction could be either counterclockwise or just clockwise from the positive

x-axis. The circumference of the circle was given by 2πRUCA, and since there were LUCA

number of sensors, then it followed easily that the inter-sensor spacing (spacing between

any two consecutive sensors) was 2πRUCA

LUCA
. Generally, the location of the `th sensor in terms

of Cartesian coordinates was denoted by p
`

and defined as

p
`

=

[
RUCA cos

(
2π(`− 1)

LUCA

)
, RUCA sin

(
2π(`− 1)

LUCA

)
, 0

]T
,

for ` = 1, 2, 3, · · · , LUCA, where x = R cos
(

2π(`−1)
LUCA

)
, y = R sin

(
2π(`−1)
LUCA

)
and z = 0

where T denotes transposition. With the information stated above, the main aim was to

derive array manifold vector for the UCA denoted by a
UCA

(θ, φ), as follows:

4.1.2 Observations at the Array of Sensors

Let y(t) to be the signal that would be received on point O at time instant t, such that the

observations at the array of sensors with respect to time instances t and position vector p

would be given by,

y(t,p) =


y(t− τ1)

y(t− τ2)
...

y(t− τ
L
)

 , (4.1)

where p = [p1 ,p2 , ...,pL
] and τ

`
=

v(θ,φ)Tp
`

c
is the time delay for the signal to reach the `th

sensor with c being the propagation speed of the signal which is prior known deterministic

constant.
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The value of v(θ, φ) in the time delay equation can defined as,

v(θ, φ) = −


vx(θ, φ)

vy(θ, φ)

vz(θ)



= −


sin(θ) cos(φ)

sin(θ) sin(φ)

cos(θ)

 , (4.2)

where vx(θ, φ) , vy(θ, φ) and vz(θ) denote the direction cosine along x, y and z-axes re-

spectively. The negative sign shows the direction of the incident signal, i.e, the reverse

direction from the origin.

Without lose of generality, from the above information, it was clearly deduced that:

τ
`

=
v(θ, φ)Tp

`

c

= −1

c


sin(θ) cos(φ)

sin(θ) sin(φ)

cos(θ)


T [

RUCA cos

(
2π(`− 1)

LUCA

)
, RUCA sin

(
2π(`− 1)

LUCA

)
, 0

]T

= −1

c
[sin(θ) cos(φ) sin(θ) sin(φ) cos(φ)]


RUCA cos

(
2π(`−1)
LUCA

)
RUCA sin

(
2π(`−1)
LUCA

)
0


= −1

c

[
sin(θ) cos(φ)RUCA cos

(
2π(`− 1)

LUCA

)
+ sin(θ) sin(φ)RUCA sin

(
2π(`− 1)

LUCA

)
+ 0

]
= −RUCAsin(θ)

c

[
cos(φ) cos

(
2π(`− 1)

LUCA

)
+ sin(φ) sin

(
2π(`− 1)

LUCA

)]
= −RUCA

c
sin(θ) cos

(
φ− 2π(`− 1)

LUCA

)
. (4.3)

Next, the time domain signals was converted to frequency domain by taking Fourier trans-
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form of y(t,p) from which the `th component was obtained to be;

y
`
(ω) =

∫ ∞
−∞

e−jωty(t− t
`
)dt

= y(ω)e−jωt`

= y(ω) exp

{
j
2πfRUCA

c
sin(θ) cos

(
φ− 2π(`− 1)

LUCA

)}
= y(ω) exp

{
j2π

RUCA

λ
sin(θ) cos

(
φ− 2π(`− 1)

LUCA

)}
, (4.4)

(by substitution) since ω = 2πf for f being the frequency, c = λf ; λ is the signal’s

wavelength and t
`

is given by equation (4.3). Hence the observations in frequency domain

could be written as:

y(ω) =


y1(ω)

y2(ω)
...

y
L
(ω)



= y(ω)



exp
{
j 2πRUCA

λ
sin(θ) cos (φ)

}
exp

{
j 2πRUCA

λ
sin(θ) cos

(
φ− 2π

LUCA

)}
exp

{
j 2πRUCA

λ
sin(θ) cos

(
φ− 4π

LUCA

)}
...

exp
{
j 2πRUCA

λ
sin(θ) cos

(
φ− 2π(LUCA−1)

LUCA

)}


.

Therefore, the array manifold equals:

a
UCA

(θ, φ) =



exp
{
j 2πRUCA

λ
sin(θ) cos (φ)

}
exp

{
j 2πRUCA

λ
sin(θ) cos

(
φ− 2π

LUCA

)}
exp

{
j 2πRUCA

λ
sin(θ) cos

(
φ− 4π

LUCA

)}
...

exp
{
j 2πRUCA

λ
sin(θ) cos

(
φ− 2π(LUCA−1)

LUCA

)}


. (4.5)

where θ ∈
[
0, π

2

]
, φ ∈ [0, 2π). In general, the `th entry of a

UCA
was found to be;

[a
UCA

(θ, φ)]
`

= exp

{
j
2πRUCA

λ
sin(θ) cos

(
φ− 2π(`− 1)

LUCA

)}
(4.6)
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for ` = 1, 2, 3, · · · , LUCA .

4.1.3 The Concentric Uniform Circular Array (CUCA) Geometry

Two concentric circles of radiiRin andRout, both centered at the Cartesian origin and lying

on the x-y plane were considered, as shown in Figure 4.2. From figure 4.2 , it was clear

Figure 4.2: A two-circle concentric array.

that the common center of the two concentric circles was fixed and Rout > Rin. Since this

was true, it followed that 2πRout > 2πRin. Lin and Lout were let to denote the number of

isotropic sensors placed on the inner and the outer circles’ circumference respectively. The

location of the array consisting of a set of the isotropic sensors of the concentric circles was

denoted by; S1, S2, S3, · · · , SLin
for the circle of radius Rin and S1, S2, S3, · · · , SLout for

the circle of radius Rout.

As seen earlier in the UCA, the waves impinged on the origin at an azimuth angle of φ and

a polar angle of θ measured counterclockwise and clockwise from the positive x-axis and

positive z-axis respectively. The distance between any two adjacent sensors of both circles
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was given by; 2πRin

Lin
and 2πRout

Lout
. Thus the location of the `th sensor was found to be

p
`

=


[
Rin cos

(
2π(`in−1)

Lin

)
, Rin sin

(
2π(`in−1)
Lout

)
, 0
]T
, 1 ≤ `in ≤ Lin[

Rout cos
(

2π(`out−1)
Lout

)
, Rout sin

(
2π(`out−1)

Lout

)
, 0
]T
, 1 ≤ `out ≤ Lout

.

Now, in relation to the already derived array manifold vector for the UCA, the array mani-

fold vector for the CUCA was derived, denoted and defined by

a
CUCA

=

 ain

aout

 ,
where ain is the array manifold vector for the circle of radius Rin and aout is the array

manifold vector for the circle of radius Rout. Since both ain and aout were found to depend

on the variables (θ, φ), then it followed that a
CUCA

denoting the array manifold vector for

the CUCA also depended on the θ and φ and thus

a
CUCA

(θ, φ) =

 ain(θ, φ)

aout(θ, φ)

 . (4.7)

Using equations (4.1), (4.2), (4.3) and (4.4) in the UCA, it was found that the `th entries

for ain and aout were respectively given as,

[ain(θ, φ)]` = exp

{
j
2πRin

λ
sin(θ) cos

(
φ− 2π(`in − 1)

Lin

)}

for `in = 1, 2, 3, · · · , Lin and

[aout(θ, φ)]` = exp

{
j
2πRout

λ
sin(θ) cos

(
φ− 2π(`out − 1)

Lout

)}

for `out = 1, 2, 3, · · · , Lout, which were respectively expanded to yield

ain(θ, φ) =



exp
{
j 2πRin

λ
sin(θ) cos (φ)

}
exp

{
j 2πRin

λ
sin(θ) cos

(
φ− 2π

Lin

)}
exp

{
j 2πRin

λ
sin(θ) cos

(
φ− 4π

Lin

)}
...

exp
{
j 2πRin

λ
sin(θ) cos

(
φ− 2π(Lin−1)

Lin

)}


, (4.8)
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and

aout(θ, φ) =



exp
{
j 2πRout

λ
sin(θ) cos (φ)

}
exp

{
j 2πRout

λ
sin(θ) cos

(
φ− 2π

Lout

)}
exp

{
j 2πRout

λ
sin(θ) cos

(
φ− 4π

Lout

)}
...

exp
{
j 2πRout

λ
sin(θ) cos

(
φ− 2π(Lout−1)

Lout

)}


. (4.9)

Hence inserting (4.8)-(4.9) in (4.7), the array manifold vector for the CUCA is given by,

a
CUCA

(θ, φ) =



exp
{
j 2πRin

λ
sin(θ) cos (φ)

}
exp

{
j 2πRin

λ
sin(θ) cos

(
φ− 2π

Lin

)}
exp

{
j 2πRin

λ
sin(θ) cos

(
φ− 4π

Lin

)}
...

exp
{
j 2πRin

λ
sin(θ) cos

(
φ− 2π(Lin−1)

Lin

)}
exp

{
j 2πRout

λ
sin(θ) cos (φ)

}
exp

{
j 2πRout

λ
sin(θ) cos

(
φ− 2π

Lout

)}
exp

{
j 2πRout

λ
sin(θ) cos

(
φ− 4π

Lout

)}
...

exp
{
j 2πRout

λ
sin(θ) cos

(
φ− 2π(Lout−1)

Lout

)}



. (4.10)

In general, the `th entry of [a
CUCA

(θ, φ)] can be expressed as,

[a
CUCA

(θ, φ)]
`

=

 exp
{
j 2πRin

λ
sin(θ) cos

(
φ− 2π(`in−1)

Lin

)}
, 1 ≤ `in ≤ Lin

exp
{
j 2πRout

λ
sin(θ) cos

(
φ− 2π(`out−1)

Lout

)}
, 1 ≤ `out ≤ Lout

.
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4.2 The Cramér-Rao Bound (CRB) Derivation

This section presents the derivation of the Cramér-Rao Bound for the 2-circle concentric

uniform array geometry. Consequently, the Cramér-Rao Bound for the uniform circular

array geometry is stated.

4.2.1 The Statistical Data Model:

Suppose the data was corrupted by additive noise. Then, the observed data vector can be

expressed as

x(m) = a(θ, φ)s(m) + n(m), (4.11)

where, s(m) is the signal received at time instant m and n(m) is additive complex-valued

spatio-temporal white Gaussian noise with prior known mean of zero and variance of σ2
n

[38, 35, 37, 36, 33, 13, 14, 25, 23, 22, 19, 34, 5, 28, 21]. M number of discrete-time

samples were considered, and thus (4.11) was represented as

x = s⊗a(θ, φ) + n, (4.12)

where

x :=
[
xT (1), xT (2), xT (3), · · · ,xT (M)

]T
,

s := [s(1), s(2), s(3), · · · , s(M)]T ,

n :=
[
nT (1), nT (2), nT (3), · · · ,nT (M)

]T
,

denote the observations, the signals, and the additive noise, respectively. Moreover, ⊗ and
T , denote the Kronecker product and the transposition, respectively [36, 38, 37, 33].
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4.2.2 The Probability Distribution Function (PDF) of the Data

As a consequent of the observed data being in vector form, then the data’s probability

distribution function (PDF) was deduced to be,

p(x|θ, φ) =
1√

|2πΓ(θ, φ)|

{
−1

2
[x− µ(θ, φ)]H Γ(θ, φ)−1 [x− µ(θ, φ)]

}
(4.13)

where

µ(θ, φ) := E[x]

= s⊗a(θ, φ), (4.14)

Γ(θ, φ) := E
{
[x− µ(θ, φ)][x− µ(θ, φ)]H

}
= σ2

nI(Lin+Lout)M , (4.15)

for µ(θ, φ) and Γ(θ, φ) being the mean vector and the covariance matrix of the observed

data vector respectively and I(Lin+Lout)M denotes an identity matrix of size (Lin+Lout)M×

(Lin + Lout)M .

4.2.3 The Fisher Information Matrix (FIM)

It was recalled that the observed data vector was complex-valued and therefore, the Fisher

information matrix (FIM) had a (k, n)th entry of,

[F(ξ)]k,n = 2Re

{[
∂µ

∂ξk

]H
Γ−1

∂µ

∂ξn

}
+ Tr

{
Γ−1

∂Γ

∂ξk
Γ−1

∂Γ

∂ξn

}
, (4.16)

where ξn refers to the nth entry of ξ, ξ = {θ, φ} is the set of the unknown but deterministic

parameters to be estimated, Re {·} symbolizes the real-valued part of the entity inside the

curly brackets, Tr {·} represents the trace of the contents inside the curly brackets, and H

denotes conjugate transposition [38, 35, 37, 33].

From equation (4.15),

∂Γ

∂ξk
=

∂Γ

∂ξn
= 0 ,
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implying that the second term of equation (4.16) vanishes. Inserting (4.15) in (4.16)

yielded:

[F(ξ)]
k,n = 2Re

{[
∂µ

∂ξk

]H
Γ−1

∂µ

∂ξn

}

=
2

σ2
n

Re

{[
∂µ

∂ξk

]H
∂µ

∂ξn

}
. (4.17)

With equation (4.12) it was found that,

[
∂µ

∂ξk

]H
∂µ

∂ξn
=

[
s⊗∂a(θ, φ)

∂ξk

]H [
s⊗∂a(θ, φ)

∂ξn

]
= sHs

{[
∂a(θ, φ)

∂ξk

]H [
∂a(θ, φ)

∂ξn

]}
, (4.18)

since s for the signal was complex-valued sinusoid and µ(θ, φ) depended explicitly on θ

and φ.

Substituting equation (4.18) in equation (4.17):

[F(ξ)]
k,n =

2

σ2
n

sHs

{
Re

[
∂a(θ, φ)

∂ξk

]H [
∂a(θ, φ)

∂ξn

]}
. (4.19)

Here, the FIM was a 2 × 2 matrix because the parameters to be estimated were two i.e θ

and φ. Hence,

F(ξ) =

Fθ,θ F
θ,φ

F
φ,θ F

φ,φ

 , (4.20)

from which CRB(θ) ∗

∗ CRB(φ)

 =

Fθ,θ F
θ,φ

F
φ,θ F

φ,φ

−1 , (4.21)

where ∗ denotes elements not of interest for the present purpose. From (4.21):

F
θ,θ = 2

sHs

σ2
n

Re

{[
∂a(θ, φ)

∂θ

]H [
∂a(θ, φ)

∂θ

]}
, (4.22)
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F
θ,φ = 2

sHs

σ2
n

Re

{[
∂a(θ, φ)

∂θ

]H [
∂a(θ, φ)

∂φ

]}
, (4.23)

F
φ,θ = 2

sHs

σ2
n

Re

{[
∂a(θ, φ)

∂φ

]H [
∂a(θ, φ)

∂θ

]}
, (4.24)

and

F
φ,φ = 2

sHs

σ2
n

Re

{[
∂a(θ, φ)

∂φ

]H [
∂a(θ, φ)

∂φ

]}
. (4.25)

4.2.4 The Signal

Since s for the signal was complex-valued, then it was defined as s(m) = σs exp {j(2πfm+ ϕ)}

for m = 1, 2, 3, · · · ,M ; where ϕ denotes the signal phase. The s(m) was expanded as

s = σs



ej(2πf+ϕ)

ej(4πf+ϕ)

ej(6πf+ϕ)

...

ej(2Mπf+ϕ)


.

Therefore, the value of sHs was found as follows:

sHs = σ2
s



e−j(2πf+ϕ)

e−j(4πf+ϕ)

e−j(6πf+ϕ)

...

e−j(2Mπf+ϕ)



T 

ej(2πf+ϕ)

ej(4πf+ϕ)

ej(6πf+ϕ)

...

ej(2Mπf+ϕ)


= σ2

s [1 + 1 + 1 + · · ·+ 1]︸ ︷︷ ︸
M times

= Mσ2
s . (4.26)
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4.2.5 Expansion of the FIM Elements

Next the values of F
θ,θ , Fθ,φ = F

φ,θ , and F
φ,φ were computed as follows:

Using equation (4.22)

[
∂a(θ, φ)

∂θ

]H [
∂a(θ, φ)

∂θ

]
=



(
2πRin

λ

)2
cos2(θ) cos2 (φ)(

2πRin

λ

)2
cos2(θ) cos2

(
φ− 2π

Lin

)
(
2πRin

λ

)2
cos2(θ) cos2

(
φ− 4π

Lin

)
...(

2πRin

λ

)2
cos2(θ) cos2

(
φ− 2π(Lin−1)

Lin

)
(
2πRout

λ

)2
cos2(θ) cos2 (φ)(

2πRout

λ

)2
cos2(θ) cos2

(
φ− 2π

Lout

)
(
2πRout

λ

)2
cos2(θ) cos2

(
φ− 4π

Lout

)
...(

2πRout

λ

)2
cos2(θ) cos2

(
φ− 2π(Lout−1)

Lout

)



�
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e−j
2πRin
λ

sin(θ) cos(φ)

e
−j 2πRin

λ
sin(θ) cos

(
φ− 2π

Lin

)

e
−j 2πRin

λ
sin(θ) cos

(
φ− 4π

Lin

)
...

e
−j 2πRin

λ
sin(θ) cos

(
φ− 2π(Lin−1)

Lin

)
e−j

2πRout
λ

sin(θ) cos(φ)

e
−j 2πRout

λ
sin(θ) cos

(
φ− 2π

Lout

)

e
−j 2πRout

λ
sin(θ) cos

(
φ− 4π

Lout

)
...

e
−j 2πRout

λ
sin(θ) cos

(
φ− 2π(Lout−1)

Lout

)



T 

ej
2πRin
λ

sin(θ) cos(φ)

e
j
2πRin
λ

sin(θ) cos
(
φ− 2π

Lin

)

e
j
2πRin
λ

sin(θ) cos
(
φ− 4π

Lin

)
...

e
j
2πRin
λ

sin(θ) cos
(
φ− 2π(Lin−1)

Lin

)
ej

2πRout
λ

sin(θ) cos(φ)

e
j
2πRout

λ
sin(θ) cos

(
φ− 2π

Lout

)

e
j
2πRout

λ
sin(θ) cos

(
φ− 4π

Lout

)
...

e
j
2πRout

λ
sin(θ) cos

(
φ− 2π(Lout−1)

Lout

)




=

(
2πRin

λ
cos(θ)

)2 Lin∑
`in=1

cos2
(
φ− 2π(`in − 1)

Lin

)
︸ ︷︷ ︸

:= Lin/2

+

(
2πRout

λ
cos(θ)

)2 Lout∑
`out=1

cos2
(
φ− 2π(`out − 1)

Lout

)
︸ ︷︷ ︸

:= Lout/2

=

(
2πRin

λ
cos(θ)

)2
Lin

2
+

(
2πRout

λ
cos(θ)

)2
Lout

2
. (4.27)
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In the above, � is the Hadamard product.

Using (4.27) in (4.22) we obtain,

F
θ,θ = 4M

(
π

λ

σs
σn

)2 (
R2

inLin +R2
outLout

)
cos2(θ) . (4.28)
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Using (4.25):

[
∂a(θ, φ)

∂φ

]H [
∂a(θ, φ)

∂φ

]
=
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. (4.29)

Therefore, Using (4.29) in (4.25):

F
φ,φ = 4M

(
π

λ

σs
σn

)2 (
R2

inLin +R2
outLout

)
sin2(θ). (4.30)
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Using equation (4.23) which is equivalent to equation (4.24) we obtain,
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∂φ

]

=





j 2πRin

λ
cos(θ) cos (φ)

j 2πRin

λ
cos(θ) cos

(
φ− 2π

Lin

)
j 2πRin

λ
cos(θ) cos

(
φ− 4π

Lin

)
...

j 2πRin

λ
cos(θ) cos

(
φ− 2π(Lin−1)

Lin

)
j 2πRout

λ
cos(θ) cos (φ)

j 2πRout

λ
cos(θ) cos

(
φ− 2π

Lout

)
j 2πRout

λ
cos(θ) cos

(
φ− 4π

Lout

)
...

j 2πRout

λ
cos2(θ) cos2

(
φ− 2π(Lout−1)

Lout

)



�



e−j
2πRin
λ

sin(θ) cos(φ)

e
−j 2πRin

λ
sin(θ) cos

(
φ− 2π

Lin

)

e
−j 2πRin

λ
sin(θ) cos

(
φ− 4π

Lin

)
...

e
−j 2πRin

λ
sin(θ) cos

(
φ− 2π(Lin−1)

Lin

)
e−j

2πRout
λ

sin(θ) cos(φ)

e
−j 2πRout

λ
sin(θ) cos

(
φ− 2π

Lout

)

e
−j 2πRout

λ
sin(θ) cos

(
φ− 4π

Lout

)
...

e
−j 2πRout

λ
sin(θ) cos

(
φ− 2π(Lout−1)

Lout

)



T


×





−j 2πRin

λ
sin(θ) sin (φ)

−j 2πfRin

λ
sin(θ) sin

(
φ− 2π

Lin

)
−j 2πRin

λ
sin(θ) sin

(
φ− 4π

Lin

)
...

−j 2πRin

λ
sin(θ) sin

(
φ− 2π(Lin−1)

Lin

)
−j 2πRout

λ
sin(θ) sin (φ)

−j 2πRout

λ
sin(θ) sin

(
φ− 2π

Lout

)
−j 2πRout

λ
sin(θ) sin

(
φ− 4π
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)
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sin(θ) cos
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
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=
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λ
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sin 2θ

4
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`in=1

sin

(
2φ− 2π(`in − 1)

Lin
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︸ ︷︷ ︸

:= 0

+

(
2πRout

λ
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sin 2θ

4
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`out=1

sin

(
2φ− 2π(`out − 1)

Lout

)
︸ ︷︷ ︸

:= 0

= 0 . (4.31)
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Hence, Using (4.31) in (4.24) it was discovered that,

F
θ,φ = F

φ,θ

= 0 . (4.32)

4.2.6 Formulation of the CRB(θ) and CRB(φ) from the FIM

Using equation (4.21), CRBCUCA(θ) and CRBCUCA(φ) were computed as follows:

CRBCUCA(θ) ∗

∗ CRBCUCA(φ)

 =

Fθ,θ 0

0 F
φ,φ

−1 (4.33)

Hence using (4.33) above it was discovered that,

CRBCUCA(θ) = F−1
φ,φ

=
1

4M σ2
s

σ2
n
(R2

inLin +R2
outLout)

(
π
λ
cos(θ)

)2
=

1

4π2

1

M

λ2

R2
inLin +R2

outLout

(
σn
σs

)2

sec2(θ)

=
1

4π2

1

M

[
R2

in

λ2
Lin +

R2
out

λ2
Lout

]−1
sec2(θ)

(
σn
σs

)2

, (4.34)

and

CRBCUCA(φ) = F−1
θ,θ

=
1

4M
σ2
s

σ2
n
(R2

inLin +R2
outLout)

(
π
λ
sin(θ)

)2
=

1

4π2

1

M

λ2

R2
inLin +R2

outLout

(
σn
σs

)2

csc2(θ)

=
1

4π2

1

M

[
R2

in

λ2
Lin +

R2
out

λ2
Lout

]−1
csc2(θ)

(
σn
σs

)2

. (4.35)
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Consequently, the CRB(θ) and the CRB(φ) for the UCA can be given by

CRBUCA(θ) =
1

4M
σ2
s

σ2
n
R2

UCALUCA

(
π
λ
cos(θ)

)2
=

1

4π2

1

M

λ2

R2
UCALUCA

(
σn
σs

)2

sec2(θ)

=
1

4π2

1

M

[
R2

UCA

λ2
LUCA

]−1
sec2(θ)

(
σn
σs

)2

, (4.36)

and

CRBUCA(φ) =
1

4M σ2
s

σ2
n
R2

UCALUCA

(
π
λ
sin(θ)

)2
=

1

4π2

1

M

λ2

R2
UCALUCA

(
σn
σs

)2

csc2(θ)

=
1

4π2

1

M

[
R2

UCA

λ2
LUCA

]−1
csc2(θ)

(
σn
σs

)2

. (4.37)
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CHAPTER FIVE

DISCUSSION, CONCLUSION AND RECOMMENDATION

5.1 Discussion

Comparing the CUCA’s CRBs in (4.34) - (4.35) and the UCA’s CRBs in (4.36) - (4.37) it

was found that the CRBs differed by the terms, [R2
inLin +R2

outLout]
−1 and [R2

UCALUCA]
−1.

The interesting questions here were: What could be the smallest value of LUCA such that

the UCA and the CUCA have exactly equal performance? and what could be the cor-

responding value of RUCA? Suppose there existed a constraint of LUCA = Lin + Lout.

Then, the smallest value of LUCA was found such that the UCA and the CUCA performs

equally and as a result, the corresponding value of RUCA was computed. Now, it was sup-

posed that LUCA = Lout, then clearly, it implied that Lin = 0. Since for the UCA and the

CUCA to perform the same, the equation R2
UCALUCA = R2

inLin +R2
outLout holds, then the

corresponding value of RUCA was concluded to be given by,

RUCA = +

√
R2

outLout

LUCA

.

It was further noted that, the UCA and the CUCA had equal performance when the ratio

of their CRBs was one and hence the below equation was found to hold,

R2
UCALUCA =

(
R2

in −R2
out

)
Lin +R2

outLUCA,

which was also re-expressed as;

(
R2

UCA −R2
)
LUCA =

(
R2

in −R2
out

)
Lin,
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implying that,

Lin

LUCA

=
R2

UCA −R2
out

R2
in −R2

out

.

Therefore, the UCA and the CUCA were found to perform the same, if, RUCA = Rin and

LUCA = Lin implying that Lout = 0 since LUCA = Lin + Lout.

In addition, the CRBs would be smallest, if all sensors were to be placed on the outer circle

(i.e. Lin = 0) and RUCA = Rout →∞.

5.1.1 Special Cases

Special Case 1: If Rin = (Rout − λ
2
)

Equations (4.34) and (4.35) for the CRB(θ) and the CRB(φ) of the CUCA respectively

became

CRBCUCA(θ) =
1

4M

(
λ

π

)2
1((

Rout − λ
2

)2
Lin +R2

outLout

) (σn
σs

)2

sec2(θ)

=
1

4π2

1

M

λ2

R2
out (Lin + Lout) +

(
λ2

4
−Routλ

)
Lin

(
σn
σs

)2

sec2(θ)

=
1

4π2

1

M

(
σn
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sec2(θ)

[
R2
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λ2
(Lin + Lout) +

(
1

4
− Rout

λ

)
Lin

]−1
,(5.1)

CRBCUCA(φ) =
1

4M

(
λ

π

)2
1((

Rout − λ
2

)2
Lin +R2

outLout

) (σn
σs

)2

csc2(θ)

=
1

4π2

1

M

λ2

R2
out (Lin + Lout) +

(
λ2

4
−Routλ

)
Lin

(
σn
σs

)2

csc2(θ)

=
1

4π2

1

M

(
σn
σs

)2

csc2(θ)

[
R2

out

λ2
(Lin + Lout) +

(
1

4
− Rout

λ

)
Lin

]−1
,(5.2)

by expansion of the term, (Rout − λ
2
)2 and putting like terms together.
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Special Case 2: If furthermore Lin = 4 and Lout = LUCA − 4

Equations (5.1) and (5.2) became

CRBCUCA(θ) =
1

4M

(
λ

π

)2
1((

R2
out − λ

2

)2
4 +R2

out(LUCA − 4)
) (σn

σs

)2

sec2(θ)

=
1

4π2

1

M

λ2 sec2(θ)

R2
outLUCA − 4Routλ+ λ2

(
σn
σs

)2

=
1

4π2

1

M

[
R2

out

λ2
LUCA − 4

Rout

λ
+ 1

]−1
sec2(θ)

(
σn
σs

)2

, (5.3)

CRBCUCA(φ) =
1

4M

(
λ

π

)2
1((

R2
out − λ

2

)2
4 +R2

out(LUCA − 4)
) (σn

σs

)2

csc2(θ)

=
1

4π2

1

M

λ2 csc2(θ)

R2
outLUCA − 4Routλ+ λ2

(
σn
σs

)2

=
1

4π2

1

M

[
R2

out

λ2
LUCA − 4

Rout

λ
+ 1

]−1
csc2(θ)

(
σn
σs

)2

. (5.4)

5.1.2 The Proposed Geometry

Imposed on the aforementioned 2-circle concentric and uniform array geometry were these

additional constraints:

(i) Rout = Rin +
λ
2
.

(ii) Lout is wholly divisible by 4.

(iii) Lin = 4. Constraints (ii)-(iii) together produce four pairs of half-wavelength-spaced

sensors, with one pair each along the positive x-axis, the negative x-axis, the positive y-

axis, and the negative y-axis as shown in figure 5.1.
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Figure 5.1: The Proposed Geometry. β denotes LUCA − 4.

The above ensures (a) half-wavelength spacing along each of the two Cartesian dimensions

of the present planar array grid, (b) circular symmetry about the Cartesian origin, (c) a

maximum number of sensors on the outer circle.

Using the above constraints, equations (5.1)− (5.2) or (5.3)− (5.4) gave

(2π)2M

(
σs
σn

)2

cos2(θ)CRBCUCA(θ)

=

[
(Lout + 4)

(
Rout

λ

)2

− 4
Rout

λ
+ 1

]−1
:= ˜CRB (5.5)

≡ (2π)2M

(
σs
σn

)2

sin2(θ)CRBCUCA(φ).

Since Rin ≥ 0, then from constraint (i), Rout ≥ λ
2

which implied that Rout

λ
≥ 1

2
.
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Figure 5.2: Variation of the CRBs with respect to Rout

λ
and Lout. Refer to equation (5.5).

From Figure 5.2, it is clear that the CRBs decrease with increase in Lout and/or Rout

λ
, which

is expected. Analytical explanation to this observation is given below.

From the graph above, the turning point with respect to Rout using (5.5) is given by

∂ ˜CRB

∂Rout

=
−2(Lout + 4)Rout

λ
+ 4(

(Lout + 4)
(
Rout

λ

)2 − 4Rout

λ
+ 1
)2

= 0,

which implies that the turning point occurs when

Rout

λ
=

2

Lout + 4
.

However, since Lout > 0, then Rout

λ
≤ 0.5 which is the minimum point of Rout

λ
in Figure

5.2. Hence the graph has no turning point with respect to Rout

λ
and thus ˜CRB decreases

with increase in Rout

λ
. This observation is also clear from (5.5) since the numerator is a
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constant, and the denominator Lout

(
Rout

λ

)2
+ 4

(
Rout

λ

)2 − 4Rout

λ
+ 1� 1 as Rout

λ
increases.

Similarly, the turning point with respect to Lout was given by

∂ ˜CRB

∂Lout

=
−
(
Rout

λ

)2(
(Lout + 4)

(
Rout

λ

)2 − 4Rout

λ
+ 1
)2

= 0,

which implied that the turning point occurs when

Rout

λ
= 0

which is infeasible since Rout

λ
≥ 0.5. Hence the graph has no turning point with respect to

Lout and thus ˜CRB decreases with increase in Lout. This observation was also clear from

(5.5) since the numerator is a constant, and the denominator Lout

(
Rout

λ

)2
+ 4

(
Rout

λ

)2 −
4Rout

λ
+ 1� 1 as Lout increases.
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5.1.3 A Single-Circle

For a single-circle with λ
2

inter-sensor spacing with Ltot number of sensors we had

Ltot =
π

sin−1
(

λ
4RUCA

) .
Using equations (4.36)− (4.37) we obtain,

(2π)2M

(
σs
σn

)2

cos2(θ)CRB(θ) =

[(
RUCA

λ

)2

Ltot

]−1
:= ˜CRBUCA,λ

2
(5.6)

≡ (2π)2M

(
σs
σn

)2

sin2(θ)CRB(φ).

Figure 5.3: Variation of the UCA’s CRB with the total number of sensors (Ltot) and the
wavelength-normalized radius (Rout

λ
= RUCA

λ
). Refer to equation (5.6).
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5.1.4 A 2-Circle Array with Equal Number of Sensors in Each Circle

The 2-circle array geometry had the following properties

a) each circle had Ltot
2

number of sensors,

b) the 2-circles radii differed by λ
2

(i.e Rout = Rin +
λ
2
), and

c) each sensor on the outer circle was matched with one sensor on the inner circle.

Using the above information and equations (4.34)− (4.35) yields

(2π)2M

(
σs
σn

)2

cos2(θ)CRB(θ) =
1

2
(
Rin

λ

)2
+ Rin

λ
+ 1

4

2

Ltot

:= ˜CRBLin=Lout (5.7)

≡ (2π)2M

(
σs
σn

)2

sin2(θ)CRB(φ).

Figure 5.4: Variation of the 2-circle array’s (with equal number of sensors in each circle)
CRB with the total number of sensors (Ltot) and the wavelength-normalized radius (Rout

λ
).

Refer to equation (5.7).
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Estimation Accuracy’s Comparative Graph for the Proposed geometry, A Single Cir-

cle, and a 2-Circle Array (with equal (Ltot

2
) number of sensors in each circle) All with

Equal (Ltot) Number of sensors

Figure 5.5: CRBs variations of the Proposed geometry, a single circle, and a 2-circle array
(with equal (Ltot

2
) number of sensors in each circle) with the total number of sensors (Ltot =

L) at different values of the wavelength-normalized radius (R
λ

) (5.5), (5.6) and (5.7)

From Figure 5.5, it was generally deduced that, the CRBs for all the three geometries de-

crease gently with increase in the number of sensors (L) at different values of R
λ

. However,

the 2-circle geometry (the solid, the dashed-dot and the dashed curves) and the single-circle

geometry (the dashed-hexagon, the dashed-square, and dashed-asterisks curves) have ex-

actly equal performance at R
λ
= 0 · 5 but thereafter, the 2-circle geometry has lower CRB

for all R
λ
> 0 · 5.

Importantly, of all the three geometries, the proposed geometry ( the dashed-cross, the

dashed-circle and the dashed-diamond curves) has the lowest CRBs for all values of R
λ

.

Furthermore, in all the geometries, increase in R
λ

reduces the CRBs. This is possibly due

to increased aperture.
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5.1.5 Numerical Case

As aforementioned, the CUCA’s and the UCA’s CRBs in (4.34) - (4.35) and (4.36) - (4.37)

respectively differed by the terms, [R2
inLin +R2

outLout]
−1 and [R2

UCALUCA]
−1. Now, with

the array’s aperture enlargement strategy, Rout >> RUCA implying that Rin + Rout >>

RUCA. Also RinLin + RoutLout > RUCALUCA since LUCA = Lin + Lout which implied

that [R2
inLin +R2

outLout]
−1
< [R2

UCALUCA]
−1. For example, an arbitrary choice was made

that, Rout = 20 units, Rin = 8 units, RUCA = 12 units, LUCA = 12, Lout = 8 and Lin = 4.

Substituting these values in [R2
inLin +R2

outLout]
−1 and [R2

UCALUCA]
−1 respectively, then

it was found that [R2
inLin +R2

outLout]
−1

= 1
3456

and [R2
UCALUCA]

−1
= 1

1728
which clearly

implied that [R2
inLin +R2

outLout]
−1

< [R2
UCALUCA]

−1. This numerical example and any

other example satisfying the above conditions would further verify that the 2-circle con-

centric uniform array has lower CRB than the single ring array and therefore has better

performance.

44



5.1.6 Further Comparison in Estimation Accuracy of Three Versions

of the 2-Circle Concentric Uniform Array

These 3-versions were equal in size since they were derived from a single 2-ring concentric

array and had equal number of sensors (i.e define Lsum = Linner+Louter) but with different

distributions in each ring. The two rings in each version differed by λ
4

such that Router =

Rinner +
λ
4

or Rinner = Router − λ
4
.

Version One

This version had slightly greater number of sensors on the outer ring than the inner ring i.e

(i) Linner = 8

(ii) Louter = Lsum − 8

(iii) Rinner = Router − λ
4

(iv) at least 4 sensors on the inner ring lie on positive and negative x-y intercepts.

For the above properties, see the illustration on Figure 5.6.

Figure 5.6: Version one of the 2-ring concentric planar array with slightly greater number
of isotropic sensors on the outer ring than the inner ring. α represents Lsum − 8.
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Using the constraints (i)-(iii) in (4.34)-(4.35), the CRBs for version one were given by

CRBV1(θ) =
1

4π2

1

M

(
σn
σs

)2

sec2(θ)

[(
Router

λ

)2

Lsum − 4
Router

λ
+

1

2

]−1
, (5.8)

CRBV1(φ) =
1

4π2

1

M

(
σn
σs

)2

csc2(θ)

[(
Router

λ

)2

Lsum − 4
Router

λ
+

1

2

]−1
. (5.9)

Version One’s Graph

Equating (5.8) to (5.9) we had

(2π)2M

(
σs
σn

)2

cos2(θ)CRBV1(θ)

=

[(
Router

λ

)2

Lsum − 4
Router

λ
+

1

2

]−1
:= C̃RBV1 (5.10)

= (2π)2M

(
σs
σn

)2

sin2(θ)CRBV1(φ).
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Figure 5.7: Variation of version one’s CRB with the total number of sensors (Lsum) and
the wavelength-normalized radius (Router

λ
). Refer to equation (5.10).

Observations From Figure 5.7

1. The C̃RBV1 decreases gently with increase in Lsum (total number of sensors),

2. The C̃RBV1 decreases gently with increase in Router

λ
(wavelength-normalized radius).

Version Two

This version had equal number of sensors on each ring i.e

1. Rinner = Router − λ
4
,

2. each ring had Lsum

2
number of sensors,

3. the sensors on the inner ring and the sensors on the outer ring were matched at the

same azimuth angle.

The above properties are displayed in Figure 5.8.

Using the properties (1)-(2) in (4.34)-(4.35), the CRBs for version two were found to be

CRBV2(θ) =
1

4π2

1

M

(
σn
σs

)2

sec2(θ)

[
2

(
Router

λ

)2

− Router

2λ
+

1

16

]−1
2

Lsum

,(5.11)

CRBV2(φ) =
1

4π2

1

M

(
σn
σs

)2

csc2(θ)

[
2

(
Router

λ

)2

− Router

2λ
+

1

16

]−1
2

Lsum

.(5.12)
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Figure 5.8: Version two of the 2-ring concentric planar array with equal number of isotropic
sensors on both the outer ring and the inner ring. β symbolizes Linner = Louter =

Lsum

2
.

Version Two’s Graph

Equating (5.11) to (5.12) we obtain,

(2π)2M

(
σs
σn

)2

cos2(θ)CRBV2(θ)

=
2

Lsum

[
2

(
Router

λ

)2

− Router

2λ
+

1

16

]−1
:= C̃RBV2 (5.13)

= (2π)2M

(
σs
σn

)2

sin2(θ)CRBV2(φ).
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Figure 5.9: Variation of version’s two’s CRB with the total number of sensors (Lsum) and
the wavelength-normalized radius (Router

λ
). Refer to equation (5.13).

Observations From Figure 5.9

1. The C̃RBV2 decreases gently with increase in Lsum (total number of sensors),

2. The C̃RBV2 decreases gently with increase in Router

λ
(wavelength-normalized radius).

Version Three

This version had slightly greater number of sensors on the inner ring than the outer ring i.e

(i) Louter = 8

(ii) Linner = Lsum − 8

(iii) Rinner = Router − λ
4

(iv) Atleast 4 sensors on the outer ring lie on positive and negative x-y intercepts.

For the above properties, see the the illustration on Figure 5.10.
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Figure 5.10: Version three of the 2-ring concentric planar array with slightly greater number
of isotropic sensors on the inner ring than the outer ring. δ represents Lsum − 8.

Using the properties (i)-(iii) in (4.34)-(4.35), the CRBs for version three were found to be

CRBV3(θ) =
1

4π2

1

M

(
σn
σs

)2

sec2(θ)

[((
Router

λ

)2

− Router

2λ
+

1

16

)
Lsum + 4

Router

λ
− 1

2

]−1
,(5.14)

CRBV3(φ) =
1

4π2

1

M

(
σn
σs

)2

csc2(θ)

[((
Router

λ

)2

− Router

2λ
+

1
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Version Three’s graph

Equating (5.14) to (5.15) we had

(2π)2M

(
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cos2(θ)CRBV3(θ)

=

[((
Router

λ

)2

− Router
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+
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λ
− 1

2

]−1
:= C̃RBV3

= (2π)2M

(
σs
σn

)2

sin2(θ)CRBV3(φ). (5.16)
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Figure 5.11: Variation of version three’s CRB with the total number of sensors (Lsum) and
the wavelength-normalized radius (Router

λ
). Refer to equation (5.16).

Observations From Figure 5.11

1. The C̃RBV3 decreases sharp-gently with increase in Lsum (total number of sensors),

2. The C̃RBV3 decreases sharp-gently with increase in Router

λ
(wavelength-normalized

radius).
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Estimation Accuracy’s Comparative Graph for the Three Versions of the 2-Circle

Concentric Uniform Array Using Equations (5.10)-(5.16)

Figure 5.12: Comparison of the variation of the 3-versions’ CRBs with the total number of
sensors at different values of Router

λ
. Refer to equations (5.10)-(5.16).

Version 1: Represented by the solid, the dashed-dot and the dashed curves, for different

values of Rout/λ. Refer to equation (5.10).

Version 2: Represented by the dashed-hexagon, the dashed-square and the dashed-star

curves, for different values of Rout/λ. Refer to equation (5.13).

Version 3: Represented by dash-cross, the dashed-circle and the dashed-diamond curves,

for different values of Rout/λ. Refer to equation (5.16).
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Observations From Figure 5.12

1. Generally, the CRBs decrease with increase in the number of sensors at all values of
Router

λ
in all the three versions,

2. Version three (represented by the dash-cross, the dashed-circle and the dashed-diamond

curves) has the lowest CRB (best estimation accuracy) for the number of sensors less

than 16 but the highest CRB (poorest estimation accuracy) for the number of sensors

greater than 16 at all values of Router

λ
,

3. Version one (represented by the solid, the dashed-dot and the dashed curves) has the

highest CRB (poorest estimation accuracy) for the number of sensors less than 16 but

the lowest CRB (best estimation accuracy) for the number of sensors greater than 16

at all values of Router

λ
, and

4. All the three versions have exactly equal estimation accuracy at 16 number of sensors

since at this point, each ring in each of the three versions has equal (8) number of

sensors.
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5.2 Conclusion

This project proposed a new concentric circular sensor-array grid termed as the 2-circle

concentric uniform array geometry. This proposed geometry increased the array’s spatial

aperture while maintaining the inter-sensor spacing not to exceed half a wavelength and

offered all the advantages of a single-ring array geometry with minimal mutual coupling

effects. The study derived both the array manifolds and the Cramér-Rao bounds for the pro-

posed geometry and that of the single ring array geometry termed as uniform circular array

(UCA). Via the Cramér-Rao bound analysis, a better-accurate performance in direction

finding of the proposed array grid over that of the UCA was analytically verified. Further,

the performance in direction finding of the proposed array grid and that of the uniform

circular array was compared graphically under different constraints of investigation. It was

found that, the Cramér-Rao bound decreases with increase in the number of sensors and/or

the radii (increase in array’s spatial aperture). The proposed array grid was found to have

the lowest CRBs and thus had better estimation accuracy than the single ring array. Addi-

tionally, The 2-circle concentric uniform array would have the best estimation accuracy if

minimal (≤ 16) number of sensors is adopted and hence reducing hardware cost.
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5.3 Recommendation

On completion of the study, the following recommendations were made

1. The inter-sensor spacing should be less or equal to half a wavelength,

2. The 2-circle concentric uniform array geometry should be used for direction finding

as opposed to the uniform circular array geometry

3. The minimal number of sensors should be used for direction finding to minimize

hardware cost
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Appendix 1: Expansion of Series in (4.27)− (4.31)

The series in (4.27):
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)
− sin

(
2π
L

)
2 sin

(
2
L
π
) − cos (4π)

]

=
1

2

[
L+

sin
(
4π + 2π

L

)
− sin

(
2π
L

)
2 sin

(
2π
L

) ]
=

L

2
(21)

(21) is obtained by the use of trigonometric identity, sin(A + B) = sin(A) cos(B) +

cos(A) sin(B) which implies that sin(4π + 2π
L
) = sin(4π) cos

(
2π
L

)
+ cos(4π) sin

(
2π
L

)
=

sin
(
2π
L

)
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For
∑L−1

`=0 sin2
(
2π`
L

)
using the trigonometric identity sin2 (α) = 1−cos(2α)

2
we have,

L−1∑
`=0

sin2

(
2π`

L

)
= sin2

(
2π

L

)
+ sin2

(
4π

L

)
+ · · ·+ sin2

(
2π(L− 1)

L

)
= sin2 (γ) + sin2 (2γ) + · · ·+ sin2 ((L− 1)γ)

=
1− cos(2γ)

2
+ · · ·+ 1− cos (2(L− 1)γ)

2

=
1

2
[1− cos(2γ) + 1− cos(4γ) + · · ·+ 1− cos (2(L− 1)γ)]

=
1

2
[(L− 1)− (cos(2γ) + cos(4γ) + · · ·+ cos (2(L− 1)γ))] . (22)

Using the same procedure for (21) in (24), it is clear that,

1 + cos(2γ) + cos(4γ) + · · ·+ cos (2(L− 1)γ) :=
L−1∑
`=0

cos

(
2π`

L

)
= 0. (23)

Thus,

L−1∑
`=0

sin2

(
2π`

L

)
=

1

2
[L− (1 + cos(2γ) + cos(4γ) + · · ·+ cos (2(L− 1)γ))]

=
L

2
. (24)

Finally,

L−1∑
`=0

sin

(
2π`

L

)
= sin

(
2π

L

)
+ sin

(
4π

L

)
+ · · ·+ sin

(
2π(L− 1)

L

)
= sin (γ) + sin (2γ) + · · ·+ sin ((L− 1)γ)

Here, we further make use of the following trigonometric series expansion:

sin (β) + sin (2β) + sin (3β) + sin (4β) + · · · sin ((n− 1)β) + sin (nβ)

=
cos
(
1
2
β
)
− cos

(
(n+ 1

2
)β
)

2 sin
(
1
2
β
) .
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Therefore,

L−1∑
`=0

sin

(
2π`

L

)
=

cos
(
1
2
γ
)
− cos

(
(L+ 1

2
)γ
)

2 sin
(
1
2
γ
) − sin (Lγ)

=
cos
(
2π
L

)
− cos

(
4π + 2π

L

)
2 sin

(
1
2
γ
) − sin (4π)

= 0 (25)

since cos(A + B) = cos(A) cos(B) − sin(A) sin(B) which implies that cos(4π + 2π
L
) =

cos(4π) cos
(
2π
L

)
−sin(4π) sin

(
2π
L

)
= cos

(
2π
L

)
. Therefore, using (21)− (25) in (17)− (19)

the results in (4.27)− (4.31) are obtained.
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Appendix 2: Publications

Figure 13: Publication one

Figure 14: Publication two
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