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ABSTRACT 

 

Direction-of-arrival (DOA) estimation is an important branch in the field of array signal 

processing. It can be applied in such fields as wireless communication, sonar, radar, 

biomedicine, and radio detection. This fact together with the development of the 

geometries used in the past years is the principal motivation of this research project. 

Although various studies have focused on the uniform hexagonal array for direction 

finding, there is scanty use of the uniform hexagonal array in conjunction with Cram´er-

Rao bound for direction finding. In this research project, the direction-of-arrival estimation 

of Cram´er-Rao bound based on the uniform hexagonal array was studied. The proposed 

approach concentrated on deriving the array manifold vector for the uniform hexagonal 

array and Cram´er-Rao bound of the uniform hexagonal array. The Cram´er-Rao bound 

based on the uniform hexagonal array were compared with Cram´er-Rao bound based on 

the uniform circular array. The array manifold vector and Cram´er-Rao bound for the 

uniform hexagonal array were derived. The Cram´er-Rao bound based on the uniform 

hexagonal array was compared with Cram´er-Rao bound of uniform circular array. The 

conclusions are as follows, the Cram´er-Rao bound of uniform hexagonal array decreases 

with an increase in the number of sensors, whereas that of circular array reduces with 

increase in the number of sensors. The comparison between the uniform hexagonal array 

and uniform circular array shows that the Cram´er-Rao bound of the uniform hexagonal 

array was slightly higher as compared to the Cram´er-Rao bound of the uniform circular 

array. Thus, uniform circular array is a better approximator as compared to uniform 

hexagonal array. Graphical representation validated the analytical result.  
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CHAPTER ONE 

INTRODUCTION 

1.1   Background of the study 

In signal processing, the direction of arrival (DOA) estimation denotes the direction from 

which a propagating wave arrives at a point, where a set of sensors are placed. The DOA 

estimation of the impinging signal is a significant technique in array processing. In the last 

few decades, DOA has received a considerable amount of interest in the field of military, 

wireless communication, sonar, radar, among others [1]. In radar, it’s used to determine 

the location of an aircraft, taking an example of airport surveillance radar, it’s used to 

ascertain the scope of an aircraft. In sonar, it is used to determine the location of the target 

such as submarine [2]. Military use direction beams to hide transmissions from the enemy 

[3]. Mechanically steered narrow-beam antennas were used to estimate the DOA of the 

impinging signal in earlier days. A wide range of mathematical algorithms has become 

available for DOA estimation due to the introduction of digital signal processor [4]. The 

main objective of estimating the DOA using different techniques is to obtain high 

resolution in direction finding estimates using the received data from a set of sensors [5]. 

 

Fisher information matrix (FIM) is a key concept in statistical signal processing. It 

basically characterizes the amount of information data provided about the unknown 

parameter. The higher the Fisher information matrix, the greater the accuracy with which 

the variable can be determined. Cram´er-Rao bounds (CRB) is equivalent to the inverse of 

the Fisher information matrix [6]. The most significant application of the FIM is in 

determining independent lower bound for the variance of unbiased estimator. Let 𝑉(𝑿) be 

any statistic and let 𝛿(𝜃) be its expectation, so that  

𝑣𝑎𝑟(𝑉(𝑿)) ≥
(
𝑑𝛿(𝜃)

𝑑(𝜃)
)
2

𝐼𝑛(𝜃)
.                                                                                                                           (1.10) 

This is referred to as the Cram´er-Rao inequality. The value on the right-hand side of 

equation (1.10) is known as Cram´er-Rao bound. If 𝑉(𝑿) is an unbiased estimator for 

𝜃, then the numerator value becomes 1 [7]. 
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Mean square error (MSE) measures the average mean squared deviation of the estimator 

from the true value, that is 

                      MSE(𝜃)  =  𝐸 {(𝜃 − 𝜃)
2
},                                                                                   (1.11) 

where 𝜃 is an unbiased estimator and 𝜃 is the true value. Mean square error is equal to the 

variance (VAR) plus the bias of the estimator in the biased case, that is [4], 

                    MSE(𝜃) = 𝐸 {|(𝜃 − 𝐸(𝜃)) − (𝜃 − 𝐸(𝜃))|
2

}  

                                   = 𝑉𝐴𝑅{𝜃} + |𝜃 − 𝐸(𝜃)|
2
.                                                                       (1.12) 

Mean square error is equal to the variance of the estimator as shown below  

MSE(𝜃) = 𝐸 {|𝜃 − 𝐸(𝜃)|
2
} = 𝑉𝐴𝑅{𝜃}.                                                                                    (1.13) 

In order to understand the achievement of parameter estimation techniques, a set of bounds 

on their achievement is developed. These bounds are the Cram´er-Rao bounds. Thus, for 

any unbiased estimator  

MSE(𝜃) = 𝑉𝐴𝑅{𝜃} ≥ 𝐶𝑅𝐵.                                                                                                    (1.14) 

It is assumed that the PDF satisfies the condition below 

      𝐸 [
𝛿 log𝒑(𝑥;𝜃)

𝛿𝜃
] = 0.                                                                                                                 (1.15) 

The variance of any unbiased estimator satisfies  

𝑉𝐴𝑅{𝜃} ≥  
1

−𝐸[
𝛿2 log𝒑(𝑥;𝜃)

𝛿𝜃2
]  

  .                                                                                                         (1.16) 

 

Cramér-Rao bound (CRB) expresses a lower bound on the variance of any unbiased 

estimator of a deterministic parameter [2]. CRB is used as a standard in the assessment of 

the accuracy of an estimator since its estimate can be evaluated for various practice settings 

and it is an important tool for practical design [8]. CRB can be used to forecast how a 

specific plan choice impacts the photometric and astrometric achievement of the designed 

instrument [6]. Cram´er-Rao bound is also used to describe the achievement of direction 

finding in antennas arrays. The most preferred achievement measure is the Cramér-Rao 

bound for any array geometry, regardless of the estimation technique used [9].  
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Determining a lower bound on the expectation of the squared deviation of a random 

variable from its mean of an unbiased estimator is very important. It helps to predict 

whether an estimator is a Minimum variance unbiased estimator (MVUE). This occurs if 

the assessor achieves the bound for the values of deterministic parameters [2]. Minimum 

variance unbiased estimator (MVUE) do not commonly prevail and when they do, various 

methods can be used to obtain them. These methods depend on the (CRB). The estimator 

is said to be unbiased if its mean generates a true value of the unknown parameter. An 

estimator being unbiased does not mean that it is the best estimator, it only contracts that 

on average it will obtain the real value of the parameter [2]. 

The direction of arrival estimation greatly enhances communication and network capacity. 

Direction finding problem has been an active research area for decades and many methods 

have been used to solve this problem [10]. They include Maximum likelihood [3], Multiple 

Signal Classification (MUSIC) and Estimation of Signal Parameters via Rotational 

Invariance Techniques (ESPRIT). MUSIC and ESPRIT are Eigen decomposition 

algorithms, that determines the DOA estimation by decomposing the covariance matrix to 

get eigenvectors and eigenvalues [11]. Maximum Likelihood method maximizes the log-

likelihood function in order to determine the direction of arrival estimation [10].  

Uniform hexagonal array is a two-dimensional array manifold [3], that is widely used in 

practice but has obtained less attention in the field of array signal processing [12]. It occurs 

when the sensors are placed on a single hexagon with uniform spacing.  In the last few 

decades, many array geometries have been used for direction finding they include uniform 

linear array (ULA) which occurs when the sensors are equally spaced along a straight line 

[13]. ULA has perfect orientation and forms a small main-lobe in a certain direction [6]. 

ULA cannot find a 2D direction of a signal and also when the number and the angular 

distance of sensors are increased to enhance the accuracy of direction finding, the array 

length increases resulting in the change of the array structure [14].  

The uniform circular array (UCA) occurs if the sensors are placed on a single circle with 

uniform spacing [8].  The uniform rectangular array (URA) is a two-dimensional vector 
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array that occurs when the sensors are uniformly spaced on a rectangle [15]. A major 

disadvantage of URA is that an extra major lobe of similar strength emerges on the opposite 

side [3]. Non-uniform linear array (NLA) have been used to determine the direction of 

arrival estimation [16].  An L-shaped array consists of a one-dimension array whose axes 

are different have been used for direction of arrival estimation in conjunction with CRB 

[9]. UCA is able to provide 360 degrees of coverage in the azimuth plane [17]. MUSIC 

based on uniform circular array is compared to Music based on uniform linear array in 

direction finding. UCA performs better than ULA since its array size is small and it is 

easier to increase sensor to enhance the accuracy of direction of arrival estimation [14].  

The parameters of DOA are obtained from the array manifold vector with a precision that 

depends on the estimation technique and array geometry [8]. A sensor array is a group of 

sensors usually deployed in a certain geometry pattern, for collecting and processing 

signals. Each sensor converts an electromagnetic wave into a voltage [18]. The merit of 

using an array of sensors over a single sensor is to obtain better performance [16]. Most of 

the methods used to determine DOA considers the intersensory spacing between any two 

sensors to be half wavelength on ULA. Nevertheless, in wireless communication, there are 

some cases where such half wavelength spacing is not relevant [16]. Digital sensors arrays 

have several merits over traditional arrays including enlarged coverage, expanded system 

capacity, and resistance to two waves superpose to form a resultant wave. They also have 

the ability to ascertain an incoming signal of direction finding [19]. 

1.2   Statement of the problem  

The accuracy of direction finding had been conducted for the 3D planar array, nested sparse 

circular array (NSCA), an L-shaped array using Cramér-Rao bound method. The direction 

of arrival estimation using uniform hexagonal array had been conducted employing 

improved swarm optimization method and the global hybrid optimization method. Uniform 

circular array is the traditionally known best approximator of direction of arrival estimation 

using multiple signal classification, bistatic multiple-input multiple-output radar, and 

Cramér-Rao lower bound method. More recently, circular arrays have been proposed for 

direction finding in particular for sensor arrays unlike linear arrays, circular array can scan 
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horizontally for 3600with no distortions in the array pattern of a circular array. The 

direction of arrival estimation using a uniform hexagonal array, employing the Cramér-

Rao bound method had not been addressed. This study, therefore, aimed at deriving array 

manifold, Cramér-Rao bound and comparing the Cramér-Rao bound of the uniform 

hexagonal array and uniform circular array. The geometry was centered at the origin of the 

Cartesian plane lying on the x-y plane. M number of isotropic sensors with equal inter-

sensor spacing were uniformly spaced. 

 

1.3   Justification of the study 

An accurate direction of arrival is a challenging and interesting area in array signal 

processing. The increase in the direction of arrival estimation applications in our life has 

increased the requirements for accurate direction-finding estimation. One way of achieving 

these requirements is by using the Cramér-Rao method. Therefore, correct DOA estimation 

becomes more important in Wireless communication, radio astronomy, sonar, radar, 

navigation, and the tracking. In view of the weakness of the linear array and rectangular 

array, it is necessary to consider some other geometries, such as circular and hexagonal 

arrays. The study will improve the accuracy of direction of arrival and enhance application 

in various field. Researchers can use this study to improve the accuracy of direction of 

arrival, by deriving the Cramér-Rao bound of other polygons and comparing them with 

Cramér-Rao bound of a uniform hexagonal array and uniform circular array. The geometry 

that will have the lowest Cramér-Rao bound, will be the most appropriate geometry for 

direction of arrival estimation. 

 

1.4    General objective 

To determine the accuracy of direction of arrival estimation using Cramér-Rao 

bound based on the uniform hexagonal array and compare the Cramér-Rao bound 

of the uniform hexagonal array with that of the uniform circular array. 

1.4.1   Specific objectives 

1. To derive the array manifold vector for the uniform hexagonal array. 

2. To derive the Cramér-Rao bound for the uniform hexagonal array. 
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3. To compare Cramér-Rao bound of the uniform hexagonal array and uniform 

circular array. 

 

1.5 Scope of work 

The scope of this research work was limited to a set of isotropic sensors that were uniformly 

distributed on the edge length and vertices of the uniform hexagonal array. The central 

point of the array was at the origin of a Cartesian coordinate system, which was the 

reference point. A complex-valued sinusoidal signal from a far-field source impinged on a 

set of the array of sensors at an azimuth angle of ϕ, which was measured counterclockwise 

from the positive x-axis, and a polar angle of θ measured clockwise from the positive z-

axis. The signal was corrupted by a complex-valued Gaussian noise, with real-valued 

component statistically independent from the imaginary-valued component, with a known 

variance 𝜎2and a mean of 0. Azimuth angle and polar angle were modeled as deterministic 

but prior unknown. Observed data vector followed a normal/Gaussian distribution. 

Cramér-Rao bound of azimuth and the polar angle was obtained from the inverse of the 

Fisher information matrix. 

 

.  
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CHAPTER TWO 

LITERATURE REVIEW 

In this chapter, the literature review of the array manifold for various geometries, Cramér-

Rao bound and comparison of the achievement of different geometries was analyzed. 

 

2.1 Array manifold vector 

This section introduces the definition of the array manifold vector and its importance in the 

estimation of direction of arrival estimation. A tetrahedral array whose sensor fail 

randomly, tetrahedral array in conjunction with hybrid Cramér-Rao bound and uniform 

linear array manifold vector are provided in this section. 

 

Array manifold vector refers to a set of data received on an array of sensors from an 

incoming signal. It varies depending on the pattern of the sensor under consideration [18]. 

The array manifold vector is one of the most important parameters of an array system. The 

characteristic of an array system can be assimilated in the array manifold, which denotes 

the responses of an array system. An array manifold is a geometric object, entrenched in a 

multidimensional complex space [20]. A regular tetrahedral array whose essential sensors 

fail unsystematic has been used for DOA estimation. A sensor can fail, to make up for such 

a scenario in DOA estimation, an estimated lower bound is defined. A simple statistical 

data model is assumed for the arriving signal and the corrupting noises in order to focus on 

the stochastic effects of sensor failure. A signal from a far-field source impinges on the 

tetrahedral array at an azimuth angle θ and polar angle ϕ. It is assumed that an 𝑚𝑡ℎ sensor 

is located on the (𝑥𝑚, 𝑦𝑚, 𝑧𝑚). The whole tetrahedral array is described by 4 × 1 array 

manifold vector, whose 𝑚𝑡ℎ element is given by the equation 

 [𝒂(𝜽,𝝓)]𝑚 = 𝑒
𝑖2𝜋

𝜆
[𝑥𝑚 sin(𝜃) cos(𝝓)+𝒚𝒎 sin(𝜃) sin(𝝓)+𝑧𝑚 cos(𝜃)] .                                    (2.11) 

To evaluate the azimuth-polar DOA estimation accuracy, the failure rate should approach 

zero while estimated lower bound should approach the CRLB [21].  
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A tetrahedral array of identical sensors is used for DOA estimation using the hybrid 

Cramér-Rao (HCRB). Each sensor is considered to be suffering a certain random complex 

gain. The first case to be considered is when each sensor suffers an uncertainty in its 

complex gain. The tetrahedral array was made up of four sensors with equal inter-sensor 

spacing. 𝑀 number of identical sensors that are separately located in space is considered. 

The three-dimensional location of the 𝑚𝑡ℎ sensor is denoted as 𝑥𝑚, 𝑦𝑚, 𝑧𝑚. An incident 

signal of wavelength 𝜆, arriving on an array of sensor from an elevation angle θ and an 

elevation angle ϕ, specified with respect to the positive 𝑥-axis. The array manifold vector 

is characterized by an 𝑀 × 1 array response whose 𝑚𝑡ℎ entry equals  

[𝒂]𝑚 = 𝑔𝑚𝑒
𝑖2𝜋

𝜆
[𝑥𝑚 sin(𝜃) cos(𝝓)+𝒚𝒎 sin(𝜃) sin(𝝓)+𝑧𝑚 cos(𝜃)]                                                          (2.12) 

where 𝑔𝑚  denotes sensor’s stochastic complex gain. The sensor stochastic complex gain 

affects the (HCRB) through multiplicative factor [22]. Successful performance analysis 

method is used to evaluate array manifold of Uniform linear array, to enhance DOA 

estimation performance. The expression of the array manifold vector is expressed as 

follows 

      𝐚(𝛟𝐢) = [𝐩𝟏(ϕ𝐢)𝑒
−𝒊𝝎𝝉𝟏 , 𝐩𝟐(ϕi)𝑒

−𝑖𝜔𝜏2 , 𝐩𝟑(ϕi)𝑒
−𝑖𝜔𝜏3 … , 𝐩𝐧(ϕi)𝑒

−𝑖𝜔𝜏𝑛   ]
𝑻
.         (2.13) 

The results above shows that DOA estimation achievement can be enhanced by increasing 

the aperture of the array antenna [11]. 

 

Array signal processing (ASP) is a new algorithm in Digital Signal Processing with many 

applications. ASP is the quickest growing area of electrical engineering. It is an active area 

and involves analyzing the data received on the array of sensors [14]. In order for the array 

of sensors to be able to give the necessary functionality and gain of the transmission, they 

need to be able to discern the direction of arrival (DOA) of the needed impinging signal 

[23]. It is a wide area of research that extends from the simplest 1D to the complex form 

of MD. DOA is a parameter estimated from the collected information. Determining the 

position of the object or DOA of a signal is one of the expounded estimation tasks. 

Direction-of-arrival (DOA) estimation refers to an angle at which a signal impinges on the 

array of sensors. To approximate the DOA of the signal, we need to estimate the azimuth 

and polar angles in regard to the incoming signals [10]. 
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 In the last few decades, accurate determination of DOA from a signal source has received 

a considerable amount of interest in various fields such as wireless communication, radar, 

sonar and military [10]. In the last decade, DOA estimation has been focusing on 

approximating the direction of electromagnetic waves arriving on the array of sensors [24]. 

An accurate DOA estimation of the signal from a far-field source to a receiving sensors 

array can increase the wireless communication systems capacity [25]. The array of sensor 

can either be passive or active. In a passive system, the sensor array has the task of listening 

to the environment. In this case, the energy source is the target itself.  In an active system, 

on the other hand, a transmitter emits energy to the environment and the sensor array listens 

to the environment for the response of the target [26].   

 

2.2 Cramér-Rao bound method 

This section introduces the definition of the Cramér-Rao bound (CRB), the uses of the 

CRB, how it has been used for direction finding in various geometries and finally, how it 

has been used in conjunction with other techniques for accuracy of direction of arrival 

estimation. 

 

CRB is a lower bound on the variance of any unbiased estimator. The derivation of the 

CRB depends on the assumed model for the received signal and the parameters to be 

estimated. Determining the CRB helps to provide a form for minimum variance unbiased 

estimator, demonstrates the importance of the proposed estimators and also helps on the 

judgment of the proposed estimators [2]. The higher the SNR the lower the CRB. It is used 

as a performance measure which under planar and coplanar array is obtained from the 

inverse of the Fisher information matrix. When the array is planar the CRB is further 

simplified, since a fixed source polar angle becomes a cosine function of the azimuth 

source [27]. The use of the polar coordinate system to define sensor positions can give a 

more compressed expression of the CRB, on the other hand, a cartesian coordinate system 

is useful for specifying how CRB is affected by a particular array geometry [28].   
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CRB is an important benchmark used to assess the achievement of various unbiased 

estimators. It is applied in communication and signal processing fields. The estimation 

accuracy of the near-field array manifold through the derivation of the CRBs have been 

analyzed. The CRB of distance increases linearly with an increase in distance wherever the 

sources are near the sensor. The CRB is dependent on the distance between the sources and 

sensors in the Gaussian source scenario. However, in polynomial-phase source scenario, 

the CRB of the angle of arrival do not depend on the distance [29]. Stochastic CRB on 

DOA estimation accuracy has been derived for non-circular Gaussian sources. Stochastic 

CRB of a closed-form expression for DOA parameters is derived directly from Slepian-

bangs formula [30].  

 

The achievement of high-resolution DOA estimation method is evaluated using stochastic 

and deterministic CRBs. Two approaches are considered in computing the stochastic CRB. 

One of the approaches is computing the asymptotic covariance matrix of the ML estimator 

and the second one is deriving it directly from extended Slepian-bangs formula. In low 

DOA estimation and SNRs, the differences between non-circular and circular complex 

Gaussian CRB are quite important [31]. The CRB is a lower limit on the variance of any 

unbiased estimator and therefore an important tool to determine the achievement of 

parameter estimation methods. In particular, the Cramér-Rao inequality states that the 

covariance matrix of any unbiased estimator satisfies  

𝐶𝑜𝑣{𝜃(𝑥)} ≥ 𝐶  

C is the corresponding CRB matrix. Closed form expression for Cramér-Rao bound have 

been derived. The most preferred among these is the deterministic CRB. Which assumes 

that the symbols are unknown but can be determined [53]. 

 

The angles of direction finding are reduced if two legs of an L-shaped array are not totally 

upright. The reduction is computed via deterministic CRB. L-shaped data model consists 

of Lx and Ly number of similar sensors that are equally spaced. The two legs are assumed 

to share the same sensor at the origin of the Cartesian plane. The Fisher information matrix 

(FIM) has a (t, u)-th entry equal to [23], 
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                 [𝐹(𝝃)]𝑡,𝑢 = 2𝑅𝑒 {[
𝜕𝝁(𝛼,𝛽 )

𝜕𝜉𝑡
 ]
𝐻
[Г(𝛼, 𝛽 )]−1 [

𝜕𝝁(𝛼,𝛽 )

𝜕𝝃𝑢
 ]} +

                                    Т𝑟 {[Г(𝛼, 𝛽 )]−1 [
𝜕Г(𝛼,𝛽 )

𝜕𝝃𝑡
 ] [Г(𝛼, 𝛽 )]−1 [

𝜕Г(𝛼,𝛽 )

𝜕𝝃𝑢
 ]}.                           (2.14) 

Using equation (2.14) the CRBs are given by 

           [
𝐶𝑅𝐵(𝛼) ∗
∗ 𝐶𝑅𝐵(𝛽)

] =  [
𝐹𝜶,𝜶 𝐹𝞫,𝜶  
𝐹𝜶,𝞫 𝐹𝞫,𝞫

]

−1

=  [

1

𝐹𝜶,𝜶
0

0
1

𝐹𝞫,𝞫

].                                            (2.15) 

where ∗ are off diagonal terms. 

Using the above approach, the CRBs of the unknown parameters is given by  

             𝐶𝑅𝐵 (𝜶)  = 
1

𝐹𝜶,𝜶 
 
3 𝜎𝑐𝜆

2

4𝜎𝑠𝜋2𝐾
 [

sin2( 𝛼)

Δ𝑦
2𝐿𝑦(𝐿𝑦−1)(2𝑙𝑦−1) 

+ 
cos2(𝛼+𝛽)

Δ𝑥
2𝐿𝑥−1(2𝐿𝑥−1)

]
1

𝜃
.                          (2.16) 

𝐶𝑅𝐵 (𝜷)  = 
1

𝐹𝜷,𝜷 
 
3 𝜎𝑐𝜆

2

4𝜎𝑠𝜋2 𝐾
 [

cot2(𝛼) cos2𝛽

Δ𝑦
2𝐿𝑦(𝐿𝑦−1)(2𝑙𝑦−1)

+
[cot(𝛼)sin (𝛽+𝛼)−sin(𝛼)]

Δ𝑥
2𝐿𝑥−1(2𝐿𝑥−1)

]
1

𝜃
.                    (2.17) 

A small wave along the β coordinate is introduced in the CRB(α). The wave becomes more 

prominent, as the elevation angle α approach 90 degrees. CRB(β) obtain a new peak as 

elevation angle approaches 90 degrees [32].  

 

A simple statistical data model is used in the analysis of sensor complex gain. Suppose that 

a sinusoidal signal 𝑧(𝑚) at a frequency 𝑓0 and wavelength 𝜆, arriving onto a tetrahedral 

array from an azimuth angle of 𝜃 ∈ [0, 2𝜋] and an elevation angle of 𝜃 ∈ [0,
𝜋

2
].  The 𝑚𝑡ℎ 

sensor has a array manifold vector equal to [22] 

𝒂𝑚 = 𝑗𝑚𝑒𝑥𝑝 {𝑖
2𝜋

𝜆
[𝑥𝑚 sin(𝜃) cos(𝜙) + 𝑦𝑚 sin(𝜃) sin(𝜙) + 𝑧𝑚 cos(𝜃)]}.                    (2.18)                   

The tetrahedral array at 𝑚𝑡ℎ discrete time instant has a 4 × 1 data vector 

𝑧(𝑚) = 𝒂𝜎𝑠𝑒
𝑖(2𝜋𝑓0+𝜑) + 𝑛(𝑚).                                                                                                  (2.19) 
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Let take into consideration a linear array sensor with 𝑀 sensors that are equally spaced. 

Suppose that there are narrowband signal sources (K). Assume that the incident signal and 

the noise are uncorrelated. The number of sources is assumed to be less than the number 

of sensors. The array manifold vector is 

𝒂 = 𝒆𝒊(
𝟐𝝅

𝝀
𝒅𝟏 𝐬𝐢𝐧(𝜽𝒌)).                                                                                                                    (2.20) 

The signal assembled by all the sensors at time t can be expressed as  

𝑍(𝑡) = 𝐴𝑠(𝑡) + 𝑛(𝑡),                                                                                                                 (2.21) 

where 𝑍(𝑡) = [𝑧1(𝑡), 𝑧2(𝑡) …𝑧𝑚(𝑡)]
𝑇 is a vector received by the array of sensor, 𝐴 is a 

array manifold vector 𝑠(𝑡) is the signal [16]. A signal source is placed in the far field and 

emits a sinusoidal signal of 

  𝑧(𝑚) = 𝜎𝑠 exp {𝑖
2𝜋𝑐

𝜆
𝑇𝑚 + 𝜑},                                                                                                 (2.22) 

At the 𝑚𝑡ℎ  time instant, with 𝜎𝑠 known amplitude, a known wavelength of 𝜆, a known 

speed c and T is the known discrete time sample. The signal arrives upon a dipole triad 

placed at a spherical coordinates origin. The impinging signal is corrupted by additive 

noise. The scalars 𝜀 = 𝜃, 𝜙, 𝛾, 𝜂 are modelled as prior unknown but deterministic. At each 

time instant 𝑚, the dipole triad would collect an 𝑀 × 1 vector data  

𝑧(𝑚) = 𝑔𝑒(𝜃,𝜙,𝛾,𝜂 )s(m)+Jn(m).                                                                                                   (2.23) 

Direction of arrival estimation aims to estimate the azimuth angle and the elevation angle, 

based on the observation [54]. A general case where the azimuth-elevation angle for DOA 

estimation is considered. Suppose that 𝐹(𝜀) denotes the Fisher information matrix. Its (k, 

r) entry is equal to 

 [𝐹(𝝃)]𝑘,𝑟 = 2𝑅𝑒 {[
𝜕𝝁

𝜕𝜉𝑘
 ]
𝐻
[Г]−1 [

𝜕𝝁)

𝜕𝝃𝑟
 ]} + Т𝑟 {[Г]−1 [

𝜕Г

𝜕𝝃𝑘
 ] [Г]−1 [

𝜕Г

𝜕𝝃𝑢
 ]},                   (2.24)   

where  𝝁 = 𝐸[𝑧] = 𝑠 ⊗ 𝑔𝑒(𝜃, 𝜙, 𝛾, 𝜂),                                                                                      (2.25)          

             Г = E[(𝑧 − 𝝁)(𝑧 − 𝝁)H] .                                                                                             (2.26)    

Since the mean of the equation (2.25) does not depend on the 𝜎𝑛,it implies that 
𝜕𝝁

𝜕𝜎𝑛
= 0. 

The covariance matrix of equation (2.24) is independent of  (𝜃, 𝜙, 𝛾, 𝜂)  implying that  

𝜕Г

𝜕𝜃
=

𝜕Г

𝜕𝜑
=

𝜕Г

𝜕𝛾
=

𝜕Г

𝜕𝜂
= 0.                                                                                                                 (2.27) 

Thus, the trace of equation (2.24) is equal to zero [54].   
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The direction of arrival is estimated using nested sparse circular array (NSCA), employing 

the Cramér-Rao lower bound (CRLB) method. Unknown signal model for NSCA is 

considered. The CRLB of NSCA is obtained and compared with CRLB of the uniform 

circular array. CRLB for NSCA is better as compared to the CRLB of UCA for the 

unknown direction of arrival estimation [9]. A single sensor is used to evaluate the 

achievement of DOA estimation using CRB method. The sensor is moved to a distinct 

position to form a virtual sensor array. An inertial measurement unit is used to determine 

the sensor position and to lower the cost of DOA estimation. CRLB is computed for both 

the known position of the sensors and when the position is estimated. Using these two 

approaches, the increase in the sensors does not give important enhancement in the 

achievement of DOA estimation [33]. 

 

The CRB technique is used to estimate the azimuth and elevation angle, of a far-field source 

using 3D planar array model. CRB expression of a 3D planar array for the conditional and 

unconditional model is derived and compared with a 2D planar array. When an appropriate 

rate is selected, a 3D array has superior estimates as compared to 2D planar array for both 

the azimuth and elevation [33]. Cramér-Rao bound method is used to determine the 

direction of arrival using lens embedded sensors array. CRLB for DOA estimation is 

influenced by the angle of arrival and the quality of the lens. The quality of the lens is 

described by the distance between the center of the lens and the focus [34]. 

 

The CRB of direction finding for the lens is given by equation 

                                𝐶𝑅𝐵(𝜙) =  
6𝜎𝑛

2

𝑑2𝑀(𝑀−1)𝑘2ℎ2 cos(𝜙)
 .                                                                    (2.28)  

The results above, show that the lens antennae provide better achievement as compared to 

antennae without the lens [34].  CRB is used as a standard in the assessment of the accuracy 

of an estimator since its estimate can be evaluated for various practice settings and it is an 

important tool for practical design [8]. The CRB is obtained from the inverse of the Fisher 

information matrix [32].  

 



14 
 

Maximum likelihood (ML) technique is used to estimate the direction of arrival estimation 

using a uniform linear array. The CRB is used to give a lower bound on the covariance 

matrix of any unbiased estimator. The ML performance is compared with MUSIC, 

ESPRIT, and MVDR and evaluated against the CRB. ML estimator exhibit better 

achievement measure as compared to the other methods [10]. ML estimates the direction 

of arrival from an array of sensors by maximizing the log-likelihood function. The ML 

method offers high performance but is computationally expensive [10].  

 

Deterministic and the proposed stochastic ML estimators are compared. The proposed 

stochastic ML estimators provide better accuracy than deterministic estimator. This 

method tries to find the parameter values that are most likely to have generated the 

observed distribution. Maximum likelihood algorithms were among the first algorithms to 

be scrutinized for direction finding estimation. At low SNR conditions, ML techniques are 

superior as compared to other estimators. These techniques play an important role in sensor 

array processing since they give an excellent a trade-off between asymptotic and threshold 

of estimation achievement. Maximum likelihood is used to estimate the direction of arrival 

of narrowband signals using scattered sensor arrays [15]. 

 

Two-dimensional state-space balance method is used to estimate the direction of arrival 

employing URA geometry. A far-field wave impinges on the array of the sensors, where 

the emitter locations are scattered. This method shows better achievement by using 

discernibility and manageability matrices. This technique gives self-regulating paired 2D 

direction cosine estimates without an identical pair [33]. Multiple signal classification 

(MUSIC) and improved Multiple signal classification are used to estimate the direction of 

arrival estimation using a uniform linear array. The MUSIC technique is inefficient in 

approximating the impinging coherent signals while the improved version overcomes this 

problem. Array signal processing strengthens the important signals that impinge on the 

array of sensors [26]. Planar antenna arrays, including circular, concentric and hexagonal, 

rectangular and V-shaped are used to estimate the problem of DOA using super-resolution 

MUSIC method. The false peaks problem that occurs in the spatial spectrum is also 

considered. The achievements are determined in various noise environments. The more the 
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opening the less probability for a false peak to occur. It was established that rectangular 

array is the most vulnerable in producing false peaks while V-shaped is the least [35].  

 

The MUSIC technique is based on the eigen decomposition of the covariance matrix of the 

received signal. It gives higher ranking resolution since it has essential eigen structure. It 

executes well in case of incoherent signals, but its performance reduces in signals having 

the same phase and frequency [35]. DOA estimation problem is considered using circular 

and concentric circular arrays, employing MUSIC technique.  The problem of measuring 

the incorrect peak is also taken into consideration. To conquer the problem of DOA 

estimation, azimuth and elevation angles are estimated. A narrowband signal 𝑠(𝑡) =

u(t) cos[ω0 + v(t)]  is considered. Concentric antennae array comprising of two circular 

arrays, with three and four sensors respectively. Two signals impinge at the array of the 

sensor at azimuth and elevation angles 𝛽1 = 20
0, 𝛼1 = 20

0, 𝛽2 = 45
0, 𝛼1 = 45

0. Multiple 

incorrect peaks occur around the verified mesh of the sources of the signals. The number 

of incorrect peaks taking place in the concentric array is higher as compared to a circular 

array [25]. 

 

Concentric circular arrays (CCAs) is used to estimate the DOA estimation problem using 

MUSIC technique, and it compared to ULA and UCA. The central point of the array is 

taken as the reference point. The position of the last sensor is  𝑟𝑔 =

(𝑟𝑔 cos(𝛽𝑔) , 𝑟𝑔 sin(𝛽𝑔) , 0). ULA can only estimate azimuth angle, while CCAs estimate 

azimuth and elevation angles. CCAs gives a more precise estimation as compared to ULA 

and UCA for higher angles resolutions. Higher computational power is required in 

approximating the DOA in CCA as contrasted to ULA and UCA [17].  

 

MUSIC is used to estimate direction of arrival estimation. In the last decades, wireless 

communication services have increased rapidly. The significance factor of research in 

wireless communication have increased the demand for the improvement of the capacity, 

coverage and quality of communication systems. There are many factors that affect the 

performance of MUSIC, they include the number of sensors, number of snapshot and inter-

sensor spacing. The simulation results show that when the number of snapshot increases, 
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the accuracy of DOA estimation increase. When the number of array of sensors increases, 

the accuracy increases but the speed decreases. When the inter-sensor spacing is less than 

half wavelength, the MUSIC technique resolution improves [22].  

 

DOA estimation is estimated using L-shaped array employing Tayem’s algorithm and 

Kikuchi’s algorithm, these methods estimate the azimuth and elevation angles of arrival, 

by an extended performance of cross-correlation matrix obtained from an L-shaped. 

Azimuth angles are obtained by the interrelation between the elevation and azimuth angle. 

At small signal-to-noise ratio and with a low number of snapshots, Tayem’s algorithm and 

Kikuchi’s algorithm gives better achievement as compared to MUSIC and ESPRIT 

methods [36]. MUSIC and ESPRIT are alike in that they exploit the fundamental data 

model and initiate estimates that are asymptotically unbiased. ESPRIT has lower 

computational complexity and the requirements for storage are lower than MUSIC. 

 

2.3 Comparison of the performance 

This section compares the variables of the circular, octagonal, hexagonal, and rectangular 

arrays employing MUSIC technique method. Also, hexagonal array and circular array are 

compared using improved swarm optimization method and uniform and non-uniform array 

have been compared in direction finding using MUSIC to demonstrate the performance of 

the proposed geometries. 

 

Circular, octagonal, hexagonal and rectangular antennas arrays are compared in DOA 

estimation using super-resolution method MUSIC. The signal sources on the azimuth and 

polar angle were estimated by sensors. The octagonal array has a slightly higher root mean 

square error (RMSE) of MUSIC as compared to the other geometries while hexagonal array 

has the highest RMSE thus poor DOA accuracy. The rectangular arrays can have the lowest 

RMSE thus highest accuracy if they never had many false peaks on the spatial spectrum 

[37]. Circular, hexagonal and octagonal array for smart antennae are compared using global 

hybrid optimization method. Central force optimization and hill climbing algorithm are 

combined. The comparison between the geometries indicated that hexagonal array gave 

slightly deeper nulls and higher gain with respect to circular and octagonal arrays. Uniform 
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hexagonal array had a small overall size with the same beam width as compared to circular 

and octagonal array [38]. 

 

Hexagonal and circular antennae array employing improved swarm optimization method 

using identical antennae is compared. For comparison purpose, two different optimization 

problems where circular antennae and hexagonal antennae comprise 12 and 18 elements 

are considered. The number of the antennae array is reduced from 12 to 6 using improved 

swarm optimization method. Hexagonal antennae exhibit superior achievement as 

compared to circular antennae [39]. Circular, pyramid, slant, spiral, dual-circular and 

planar arrays for two-dimensional DOA estimation have been compared using MUSIC. 

The geometries performance is compared based on the CRB. When the polar angle is close 

to 0 degrees, the CRB of the polar angle is incompletely poor for the UCA. Thus, the polar 

reduces when the waveforms are moving from the horizon. The CRB for the polar angle 

for the other geometries has no asymptotical characteristic, implying that the polar angle 

estimation is performance is improved. The best accuracy is achieved for the planar array 

when the elevation angle is at 90 degrees [40].   

 

MUSIC and ESPRIT of DOA estimation techniques are compared using Kalman filter. The 

tracking is conducted out starting from DOA estimation. The DOA is considered as an 

initial value, the Kalman filter is used to track the source in motion based on the motion 

model. The comparison is made in terms of signal-to-noise ratio, number of snapshots and 

the number of sensor arrays. The ESPRIT algorithm was highly accurate and acted as the 

best initial estimate for Kalman filter tracking algorithm [41].  

 

Hexagonal arrays are broadly used in the enactment but have obtained less attention in 

array signal processing. Unitary ESPRIT is applied to hexagonal array for the direction of 

arrival estimation. This technique gives a computationally systematic DOA estimation. The 

mean square error is close to the CRB and threshold behavior is perfect [12]. Directive 

antennas in uniform circular arrays are used to estimate the direction of arrival. The CRLB 

of UCA is derived with directional antennas and is compared to an identical sensor for 4 

and 8 elements arrays. The directivity that reduces the CRB is distinguished and microstrip 
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patch elements estimating the optimal theoretical gain pattern are sketched, to compare 

direction finding accuracy with UCA using dipole elements. The improved DOA was 

acquired with suitable directivity [19]. 

 

A comparative study was conducted of direction finding using uniform and non-uniform 

linear array employing MUSIC method. The non-uniform array had superior estimation as 

compared to a linear array which resulted in expanding the wireless capacity. A sensor is 

a group of sensors deployed in a certain geometry pattern, used for collecting and 

processing electromagnetic or acoustic signals [16].  Employing an array of sensors has an 

advantage over a single sensor in attaining achievement for better accuracy estimation. The 

enhanced achievement involves depletion of the interference from a certain direction and 

determining the direction of arrival of the impinging signals [16]. 

 

MUSIC technique is used to determine the direction of arrival using a uniform circular 

array [6]. MUSIC based on UCA is compared to MUSIC based on ULA. MUSIC based 

on UCA is the most appropriate in airborne DOA estimation system. Since it is simple to 

plan and also the coherent signals do not depend on the aerial reflector around the sensors. 

Array signal processing (ASP) is a new algorithm in Digital Signal Processing with many 

applications [14]. DOA estimation for ULA using the MUSIC and ESPRIT techniques is 

determined. Identical sensors are linearly distributed on the ULA. The techniques give 

accurate DOA estimation than classical techniques. The achievement of these techniques 

improves when the number of sensors on the array increases [41]. 

 

UCA is used to determine the direction of arrival using the MUSIC method. It compares 

direction finding of identical elements with that of non-identical elements. To achieve 

this, the CRLB for both geometries of identical and nonidentical elements is derived. The 

CRLB for the azimuth angle of the UCA employing identical elements   is given as 

  CRLB(φ) =
2σ2α−1||b(θ)||

2

4||𝐛(θ)||
2
||(
∂𝐛

∂θ
)
2
+||(

∂𝐛

∂θ
)
H
𝐛(𝛉)−𝐛H(

∂𝐛

∂θ
)||2−||(

∂𝐛

∂θ
)||
2 .                                           (2.29)                                       

The above CRLB indicate that accurate DOA estimation can be achieved using 
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identical elements [19]. 

 

Uniform linear array and non-uniform linear array are used to estimate DOA using MUSIC 

algorithm. This algorithm determines factors that influence the precision of direction 

finding. When the number of sensors and the signal-to-noise ratio is high, this technique 

gives better estimates. Non-uniform linear array gives accurate estimates as compared to a 

uniform linear array. Non-uniform linear array assists to obtain better estimates of DF 

which result in enhancement of wireless communication system [35]. Planar and volume 

arrays with isotropic sensor have been used for direction of arrival estimation performance. 

For planar arrays, the array is identical since the CRB of the DOA estimation of a single 

source is uniform for the angles of arrival. The array of sensors is said to be isotropic if the 

bound on the mean square error (MSAE) is constant for all the azimuth and polar angles. 

The necessary and sufficient conditions of the geometry were derived that ensured that the 

MSAE is not independent on the source azimuth and polar angles. The azimuth and polar 

angles are uncoupled in the CRB, and the CRB is not dependent on the signal arrival angle 

when the conditions are satisfied [43]. 

 

Automotive radar sensors arrays are used to estimate DOA estimation using narrowband 

technique. The automotive radar is used in advance driver assisted systems. The systems 

are used to estimate the position of the objects. Bartlet, capon, and MUSIC techniques were 

compared to narrowband technique. The narrowband technique had a smallest DOA 

estimation error. This method formed no side lobes and very sharp main lobes. The 

narrowband technique had the better achievement than conventional algorithm in terms of 

DOA estimation and resolution [44].  

 

Cramér-Rao bound and root means square error (RMSE) are used as theoretical tools to 

analyze the performance of MUSIC, R-MUSIC and ESPRIT technique in DOA estimation. 

Analysis of Uniform circular array (UCA), L-shaped array (LSA), double L-shaped array 

(DLSA) and double uniform circular array (DUCA) is demonstrated. Considering both 

azimuth and elevation estimation LSA and DLSA are more accurate as contrasted to others. 

MUSIC is more accurate as compared to the other techniques [46]. The achievement of 
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different parameter estimation techniques in DOA using linear array with inter-sensor 

spacing being more than half the wavelength is studied.  Beamformer methods, MUSIC, 

ESPRIT, and Space-Alternating Generalized Maximization-expectation (SAGE) trigger an 

ambiguous error in the results of the estimated DOA, when the inter-sensor spacing is more 

than half the wavelength [46]. 

 

Planar arrays and volume arrays are used to estimate the accuracy of direction of arrival, 

using MUSIC method for electronic surveillance measure (ESM). The achievement of the 

arrays is compared depending on root mean square error, ambiguity function, and CRB. 

Depending on RMSE, CRB, and array ambiguity the planar arrays have better accuracy of 

DOA estimation, as compared to volume arrays [47]. R-Music technique is used to 

determine the DOA estimation using virtual UCA and compares it with classical MUSIC. 

CRB is derived to determine the accuracy of DOA estimation. From the result, R-MUSIC 

is more accurate as compared to classical MUSIC [48]. 

 

DOA estimation is not only affected by the incoming signal from the source but also by 

the scanty complex environment. It is affected by many factors such as signal-noise-ratio, 

number of sensors, number of snapshots, and number of signal sources [16]. The signal-

to-noise ratio (SNR) is a measure used in science and engineering that compares the level 

of the desired signal to the level of background noise. It can be strengthened by using the 

source with higher signal output power if required [19]. It directly influences the 

achievement of super-resolution direction finding algorithms. Super-resolution algorithms 

performance drops suddenly when the SNR lowers.  

 

A number of snapshots are defined as the number of samples in the time domain. In the 

frequency domain, it is defined as the number of time sub-segments of discrete Fourier 

transform. As a result of direction finding the higher the number of snapshots, the better 

the estimation achievement for techniques when the other parameters are held constant 

[49]. It refers to the signal conveyed from the transmitter to the receiver [16].  As the 

number of the array of sensors increases, MUSIC can correctly determine the DOA of the 



21 
 

incoming signals. When the number of sensors reduces, the resolution of MUSIC 

techniques reduces [50]. Mutual coupling between the sensors manipulate the array output 

signal and lowers the achievement of DOA estimation. ESPRIT method gives a more stable 

and accurate estimate of mutual coupling. It indicates that better estimation performance is 

achieved under small snapshot [51].  

 

An antenna array is a set of multiple connected antennae which work together as a single 

antenna, to transmit or receive radio waves [16]. The preferred signals from the sensors are 

joined and processed in order to acquire an improved achievement over a single sensor. An 

array of sensors has advantages over a single sensor of obtaining an improved achievement 

when employing MUSIC techniques [52]. An array of sensors can be arranged in a different 

pattern to yield a different ray’s pattern. Some of the typical array geometries arrays include 

Linear array, whereby the sensor are placed along a straight line with equal inter-sensor 

spacing between any two adjacent sensors. Non-linear array, whereby the sensor array 

elements arranged along a straight line with a non-equal spacing distance between two 

adjacent sensor elements and phase difference. Circular array, whereby the sensor array 

elements are arranged around the circumference of a circle. Planar array, whereby the 

sensor array elements are arranged over some planar surface [16].  
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CHAPTER THREE 

METHODOLOGY 

This chapter deals with the description of the procedures followed while achieving the 

following objectives array manifold vector for the uniform hexagonal array, Cramér-Rao 

bound for the uniform hexagonal array as well as comparing the derived Cramér-Rao 

bound for UHA with that of UCA. The steps for deriving the array manifold vector and 

Cramér-Rao bound for the UHA are outlined.  Finally, comparison procedures for the 

Cramér-Rao bound for UHA and UCA are reviewed. 

 

3.1 Derivation of the array manifold vector for the uniform hexagonal array (UHA) 

In this section, the uniform hexagonal array geometry has been described and the steps for 

deriving its array manifold vector outlined.  

 

It is the set of array responses of a signal for all possible azimuth-polar angles. To be able 

to estimate azimuth- polar angles of a signal, knowledge of the array manifold vector is 

required. 

The starting point for determining the direction of arrival estimation is the definition of the 

array manifold vector. It is sampled over a Grid of polar and azimuth angles defined by θ 

and ϕ respectively. A hexagon of edge length R centered at the Cartesian origin and lying 

on the x-y plane was considered. M number of isotropic sensors were uniformly distributed 

on the circumference of the hexagon, with equal inter-sensor spacing. A complex-valued 

incident signal from a far-field source impinged on an array of sensors at an azimuth angle 

ϕ, which was measured counterclockwise from the positive x-axis and a polar angle θ, 

measured clockwise from the positive z-axis as shown below, 
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Figure 3. 1: Uniform hexagonal array    

The following steps were followed in order to achieve this objective; 

 

3.1.1 Location of the general position of the sensors 

Using the procedure of deriving the array manifold of the ULA, the array manifold for 

UHA was derived. The general location of the sensors that were uniformly distributed on 

the hexagon, were expressed in terms of the polar coordinate system. It was assumed that 

suppose ℓ number of the sensors were uniformly distributed on the UHA with equal inter-

sensor spacing for ℓ = 1,2,3..., L. The general position of the ℓ𝑡ℎ  element position was 

given by equation below, 

    𝒑ℓ = [𝑥𝑙𝑐𝑜𝑠 (
2𝜋(ℓ−1)

𝐿
) ,  𝑥𝑙𝑠𝑖𝑛 (

2𝜋(ℓ−1)

𝐿
) ,  0 ]

𝑇

,                                                     (3.11)                                                      

where 𝑥𝑙 denotes the general distance from the origin of a cartesian coordinate system to 

any sensor, 𝑇 is the transpose and  𝐿 is the total number of sensor. 

y 

x 

z 
Far - field source 

θ 

φ 

𝑠𝑀 

𝑠3 𝑠1 𝑠2 

R 
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3.1.2 Determination of the observations received at the array of sensor 

Observations received at the array of sensors were determined based on the information 

received by each sensor. It was assumed that suppose g(t) is the signal received at the origin 

of a Cartesian coordinate system, then the observations at the array of sensors of a UHA is 

given as 

                                        .              g(t,p)={

𝑔(𝑡 − 𝜏1)
𝑔(𝑡 − 𝜏2)

⋮
𝑔(𝑡 − 𝜏𝐿)

}                                                            (3.12) 

where g(t,p) is the observations at the array of sensors, τ is the time delay and 𝑡 is time. 

                                                𝜏 =  
𝜔(𝜃,𝜙)𝑇𝐏ℓ

c
.                                                                            (3.13) 

c is the velocity of light, 𝐩ℓ  is  position vector of a sensor general position. The direction 

of plane wave propagation in unit direction was to be given as 

                                       𝐰(𝜃, 𝜙) =  [
cos (𝜃)
sin (𝜃)

].                                                                             (3.14) 

Combining equation (3.13) and (3.14) 

𝜏𝑙 = −
1 

𝑐
[𝑝𝑥𝑙 cos(𝜃) + 𝑝𝑦𝑙 sin(𝜃)] =  

[𝑥𝑙  cos(𝜃)−ylsin(𝜃)]

𝑐
 .                                                      (3.15)

  

3.1.3 Conversion of time domain signal into frequency domain signal 

Time domain signal was converted into a frequency domain signal, by taking the Fourier 

transform (FT) of the observations that were received at the array of sensors. Consider 

conversion of a time domain signal to frequency domain signal of a UHA 

     𝑮ℓ(𝜔) = ∫ 𝑒−𝑖𝜔𝑡 𝑔(𝑡 − 𝜏ℓ)𝑑𝑡
∞

−∞
= 𝑮( 𝜔)𝑒

{
𝑖 2 𝜋   

𝜆
[𝑥𝑙 cos(𝜃)+𝑦𝑙sin (𝜃) ]}.                    (3.16) 

where 𝜆 is the wavelength,  𝜔 = 2𝜋𝑓 is angular frequency, 𝑮ℓ(𝜔) is the frequency 

domain signal of the ℓ𝑡ℎ sensor. 

All the sensors were assumed to be identical and thus their frequency response was the 

same. Sensor output vector was expressed in terms of a frequency domain to reduce the 

level of Gaussian noise. Hence,  
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𝑮(𝜔) =

[
 
 
 
 
𝐺1(𝜔)
𝐺2(𝜔)
𝐺3(𝜔)
⋮

𝐺𝐿(𝜔)]
 
 
 
 

= 𝑮(𝜔)

[
 
 
 
 
 
 
 exp {

𝑖 2𝜋   

𝜆
𝑥0 cos(𝜃) + 𝑦0sin (𝜃)}  

exp {
𝑖 2𝜋   

𝜆
𝑥1 cos(𝜃) + 𝑦2sin (𝜃)}

exp {
𝑖 2𝜋   

𝜆
𝑥3 cos(𝜃) + 𝑦3sin (𝜃)}

⋮

exp {
𝑖 2𝜋   

𝜆
𝑥𝑛 cos(𝜃) + 𝑦𝑛sin (𝜃)}]

 
 
 
 
 
 
 

.                              (3.17)                                              

where 𝑙 = 1,2,3… 𝐿. 

The observations in frequency domain consists of the scalar and complex part, since the 

scalar part was constant the array manifold was to be given by the complex part. 

  𝐚 =

[
 
 
 
 
 
 
 exp {

𝑖 2𝜋   

𝜆
𝑥0 cos(𝜃) + 𝑦0sin (𝜃)}  

exp {
𝑖 2𝜋   

𝜆
𝑥1 cos(𝜃) + 𝑦2sin (𝜃)}

exp {
𝑖 2𝜋   

𝜆
𝑥3 cos(𝜃) + 𝑦3sin (𝜃)}

⋮

exp {
𝑖 2𝜋   

𝜆
𝑥𝑛 cos(𝜃) + 𝑦𝑛sin (𝜃)}]

 
 
 
 
 
 
 

.                                   (3.18)      

Array manifold vector for uniform circular array (UCA) 

A circle of radius R centered at the Cartesian origin and lying on the xy-plane was 

considered as shown below, 
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Figure 3. 2: Uniform circular array   

In the figure above, M number of sensors were uniformly distributed along the 

circumference of the circle of radius R. The central point of the array was at the origin of 

a Cartesian coordinate system. The sensor located at the positive x-axis was denoted as 

𝑠1while the remaining sensors were uniformly arranged counterclockwise on the 

circumference of the circle. Plane waves from a far-field source impinged on the sensors 

at an azimuth angle of ϕ, measured counterclockwise from the positive x-axis and a polar 

angle θ, measured clockwise from the positive z-axis.  

The position of the sensors for 𝑚 = 1,2,3, … ,𝑀 was generally given by  

𝒑𝑚 = [𝑅 cos (
2𝜋(𝑚−1)

𝑀
) , 𝑅 sin (

2𝜋(𝑚−1)

𝑀
) , 0]

𝑇

                                                            (3.19) 

and 
2𝜋𝑅

𝐿
 was the angular distance between any two consecutive sensors. Suppose that 

𝑦(𝑡) was the signal that was received at the origin of the Cartesian coordinate system at 

time t, then the observations at the array of sensors was given by 

y 

z 

R 

Far - field  source 

s3 

x 

θ 

φ 

𝑠3 𝑠1 𝑠2 

𝑠𝑀 
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     𝒚(𝑡, 𝒑) = [

𝑦(𝑡 − 𝜏1)

 𝑦(𝑡 − 𝜏2)
⋮

 𝑦(𝑡 − 𝜏𝑀)

],                                                                                       (3.20) 

 where 𝐩m = 𝒑𝟏, 𝐩2, 𝐩3…𝐩𝑴,   𝜏𝑚 =
𝒗(𝜃,𝜙)𝑇𝒑𝑚

𝑐
    and  

 𝑣(𝜃, 𝜙) = − [

𝑣𝑥(𝜃, 𝜙)

𝑣𝑦(𝜃, 𝜙)

𝑣𝑧(𝜃)

] = − [

sin(𝜃) cos(𝜙)
sin(𝜃) sin 𝜙
cos(𝜃)

]. (3.21) 

 𝑣𝑥(𝜃, 𝜙),  𝑣𝑦(𝜃, 𝜙) and  𝑣𝑧(𝜃) are the direction cosines along 𝑥, 𝑦 and 𝑧 axes 

respectively.  

To convert the time domain signal into the frequency domain signal, Fourier transform of  

𝐲(t, 𝐩) was taken  

     𝑌𝑚(𝜔) = ∫ 𝑦(𝑡 − 𝜏𝑚)𝑒
−𝑖𝜔𝑡𝑑𝑡

∞

−∞
   = 𝑌𝑚(𝜔)𝑒

−𝑖𝜔𝜏𝑚 ,                                        (3.22) 

where   𝜔 = 2𝜋𝑓.     

Therefore, we have the frequency domain observations as 

              𝑌(𝜔) = [

𝑌1(𝜔)
𝑌2(𝜔)
⋮

𝑌𝐿(𝜔)

] = 𝑌(𝜔)

[
 
 
 
 
 
 
 exp {𝑖

2𝜋𝑅

𝜆
sin(𝜃) cos(𝜙)}

   exp {𝑖
2𝜋𝑅

𝜆
sin(𝜃) cos(𝜙 −

2𝜋

𝐿
)}

exp {𝑖
2𝜋𝑅

𝜆
sin(𝜃) cos(𝜙 −

4𝜋

𝐿
)}

⋮

exp {𝑖
2𝜋𝑅

𝜆
sin(𝜃) cos (𝜙 −

2𝜋(𝐿−1)

𝐿
)}]
 
 
 
 
 
 
 

.                     (3.23)   

The array manifold was thus given by the complex-valued vector since the 𝑌(𝜔) was a 

constant and hence can be ignored.    

   𝒂UCA =

[
 
 
 
 
 
 
 exp {𝑖

2𝜋𝑅

𝜆
sin(𝜃) cos(𝜙)}

   exp {𝑖
2𝜋𝑅

𝜆
sin(𝜃) cos(𝜙 −

2𝜋

𝐿
)}

exp {𝑖
2𝜋𝑅

𝜆
sin(𝜃) cos(𝜙 −

4𝜋

𝐿
)}

⋮

exp {𝑖
2𝜋𝑅

𝜆
sin(𝜃) cos (𝜙 −

2𝜋(𝐿−1)

𝐿
)}]
 
 
 
 
 
 
 

.                                                                    (3.24)   
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3.2 Derivation of the Cramér-Rao bound for UHA  

The following steps were followed in the derivation of the Cramér-Rao bound for the 

uniform hexagonal array; 

 

3 .2.1 Data model 

To focus on the estimation of the direction of arrival, a statistical model was assumed 

based on the array manifold vector, incident signal and the noise [36], 

  𝐳(𝐦)  =  𝐚 s(m) +  𝐧(𝐦)        𝑚 = 1,2,3………… . .𝑀.                                                       (3.25)                                                                                                                                                                                      

s(m) is the signal released at time 𝑡, a is the array manifold vector that correspond to the 

geometrical pattern under consideration and 𝒏(m) is the noise.  The observed data vector 

followed multivariate normal/Gaussian distribution. For multiple snapshots the data model 

vector was assumed to be given by [2] 

                           �̃� = 𝒔⊗ 𝒂(𝜃, 𝜙) + �̃�                                                          (3.26) 

Where �̃� = [𝒛1, 𝒛2, ⋯ , 𝒛𝑀]
𝑇 , 𝒔 = 𝑠1, 𝑠2, ⋯ 𝑠𝑀, 𝒂 = 𝑎1, 𝑎2, ⋯ , 𝑎𝑀 �̃� = [𝒏1, 𝒏2, ⋯ , 𝒏𝑀]

𝑇 

The probability density function of  �̃� is given by  

𝑝(�̃�|𝜽) =
𝟏

√|𝟐𝝅�̃�(𝜃,𝜙)|
exp {−

1

2
[�̃� − �̃�(𝜃, 𝜙)]𝐻�̃�(𝜃, 𝜙)−1[�̃� − �̃�(𝜃, 𝜙)]},                           (3.27) 

where 𝝁 ̃(𝜃, 𝜙) = 𝐸[�̃�] = 𝒔⊗ 𝒂(𝜃, 𝜙), �̃�(𝜃, 𝜙) =  𝐸{[�̃� − 𝝁 ̃(𝜃, 𝜙)][�̃� − 𝝁 ̃(𝜃, 𝜙)]𝐻}. 

 

3.2. 2 Fisher information matrix   

Scalar parameters to be estimated were collected as the entries of a vector ξ = [θ, φ]. Fisher 

information matrix (FIM) of (k, r)-th entry is given by, 

  

[𝐹(𝝃)]𝑘,𝑟
 

= 2𝑅𝑒 {[
𝜕𝝁

𝜕𝝃𝑘
 ]
𝐻
[Г]−1 [

𝜕𝝁

𝜕𝝃𝑟
 ]} + Т𝑟 {[Г]−1 [

𝜕Г

𝜕𝝃𝑘
 ] [Г]−1 [

𝜕Г

𝜕𝝃𝑟
 ]}                   (3.28) 

where k, r = [1,2], 𝝃𝑘is the 𝑘𝑡ℎ of 𝝃 = [𝜽,𝝓],  𝑅𝑒 and Т𝑟 denotes the real part and the 

trace 
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of the identity inside the curly brackets respectively. The superscript H denotes conjugate 

transposition.  

The elements of the FIM   were   obtained as follows; 

 

[𝐹(𝝃)]1,1
 
= 2𝑅𝑒 {[

𝜕𝝁

𝜕𝜉1
 ]
𝐻
[Г]−1 [

𝜕𝝁

𝜕𝝃𝟏
 ]} + Т𝑟 {[Г]−1 [

𝜕Г

𝜕𝜉1
 ] [Г]−1 [

𝜕Г

𝜕𝝃𝟏
 ]}                          (3.29) 

[𝐹(𝝃)]1,2
 
= 2𝑅𝑒 {[

𝜕𝝁

𝜕𝝃𝟏
 ]
𝐻
[Г]−1 [

𝜕𝝁

𝜕𝝃2
 ]} + Т𝑟 {[Г]−1 [

𝜕Г

𝜕𝝃𝟏
 ] [Г]−1 [

𝜕Г

𝜕𝝃2
 ]}                        (3.30) 

[𝐹(𝝃)]2,1
 
= 2𝑅𝑒 {[

𝜕𝝁

𝜕𝝃𝟐
 ]
𝐻
[Г]−1 [

𝜕𝝁

𝜕𝝃𝟏
 ]} + Т𝑟 {[Г]−1 [

𝜕Г

𝜕𝝃2
 ] [Г]−1 [

𝜕Г

𝜕𝝃1
 ]}                         (3.31) 

[𝐹(𝝃)]2,2
 
= 2𝑅𝑒 {[

𝜕𝝁

𝜕𝝃2
 ]
𝐻
[Г]−1 [

𝜕𝝁

𝜕𝝃2
 ]} + Т𝑟 {[Г]−1 [

𝜕Г

𝜕𝝃2
 ] [Г]−1 [

𝜕Г

𝜕𝝃2
 ]} .                     (3.32) 

where 𝝁 = 𝐸[�̂�] = 𝒔⊗ 𝒂(𝜃, 𝜙), Г = 𝑛
2𝐈𝑇𝑀×𝑇𝑀, 𝑇𝑀 is the tangent bundle of manifold M, 

𝐸[�̂�] is statistical expectation  of �̂� and 𝐼𝑇𝑀×𝑇𝑀 is the identity matrix of size 𝑇𝑀. Since Г is 

independent of 𝜃 and ϕ, then 
𝜕Г

𝜕𝜀
= 0. 

The fisher information matrix was given by equation 

 

[

[𝐹(𝝃)]1,1
 

[𝐹(𝝃)]1,2
 

[𝐹(𝝃)]2,1
 

[𝐹(𝝃)]2,2
 

].                                                                                                              (3.33) 

  𝑭(𝝃) = [
𝐹𝜃,𝜃 𝐹𝜃,𝜙
𝐹𝜙,𝜃 𝐹𝜙,𝜙

]                                                                                                              (3.34)                  

[
CRB(𝜃) ∗
∗ CRB(𝜙)

] = [
𝐹𝜃,𝜃 𝐹𝜃,𝜙
𝐹𝜙,𝜃 𝐹𝜙,𝜙

]
−1

=
1

𝐹𝜃,𝜃𝐹𝜙,𝜙−𝐹
2
𝜃,𝜙
[
𝐹𝜙,𝜙 −𝐹𝜃,𝜙
−𝐹𝜙,𝜃 𝐹𝜃,𝜃

],                    (3.35) 

Where * are off diagonal terms. 

Thus, the CRBs for the uniform hexagonal array geometry was obtained using the 

following formula,  

                                            CRB(𝜃) =
𝐹𝜙,𝜙

𝐹𝜃,𝜃𝐹𝜙,𝜙−𝐹
2
𝜃,𝜙

 ,                                                              (3.36) 

                                            CRB(𝜙) =
𝐹𝜃,𝜃

𝐹𝜃,𝜃𝐹𝜙,𝜙−𝐹
2
𝜃,𝜙

.                                                              (3.37) 
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CRBs for the azimuth and polar angle were obtained from the inverse of the Fisher 

information matrix. 

 

Using the same procedure for deriving the array manifold and Cramér-Rao bound of the 

UHA, the array manifold and CRB for the UCA were derived. 

 

3.3 Comparison of the Cramér-Rao bound of uniform hexagonal array and that of 

uniform circular array    

In this section, the Cramér-Rao bound of the uniform hexagonal array is compared with 

Cramér-Rao bound of the uniform circular array using the ratio method. The performance 

comparison considers the accuracy of the DOA estimation which is the most important 

factor of the performance since it designates the estimation accuracy. The ratio of CRB of 

the UHA to the corresponding CRB of UCA was obtained. The ratio was analyzed into 

three possible scenarios, when the ratio was less than one when the ratio was equal to one 

and finally when the ratio was greater than one.  The results were validated through 

Graphical representation.   
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CHAPTER FOUR 

RESULTS AND DISCUSSION  

In this chapter, a two-dimensional array manifold vector and Cramér-Rao bound for the 

UHA were derived. The derived Cramér-Rao bound for the UHA is compared with the 

Cramér-Rao bound for the UCA using the ratio method. 

 

4.1 Derivation of Array Manifold Vector for the Uniform Hexagonal Array (UHA) 

 In this section a general distance from the reference point of the hexagon to any sensor 

was obtained, the general position of the sensors was attained, the time delay for the signal 

to arrive at the last sensor was derived, time domain signal was converted into frequency 

domain signal and finally the observations in the frequency domain signal gave the array 

manifold vector for uniform hexagonal array. 

 

To describe the array manifold vector of a complex valued signal impinging on the uniform 

hexagonal array of sensors, the general distance from the center of an equilateral triangle 

of a hexagon to any sensor was given by 

       𝑥𝑘 =
𝑅

2
√3 + [

2𝑘−1

𝑛−1
]
2

,                                                                                               (4.11) 

 

Where n is even number of sensors in an equilateral triangle and 𝑘 = 1,2,3…
𝑛

2
. 

Substituting equation (4.11) into equation (3.11) the location of the 𝑚𝑡ℎ sensor was given 

by  

       𝑷𝒎= [𝑥𝑘𝑐𝑜𝑠 (
2𝜋(𝑚−1)

𝑀
) , 𝑥𝑘𝑠𝑖𝑛 (

2𝜋(𝑚−1)

𝑀
) ,  0 ]

𝑇

                                                       (4.12) 

where 𝑚 = 1,2, …𝑀 and 𝑀 denotes the total number of  sensor. 
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Observations received at the array of sensors was determined based on the information 

received by each sensor, 

              𝑦(𝑡, 𝒑) = {

𝑦(𝑡 − 𝜏1)
𝑦(𝑡 − 𝜏2)

⋮
𝑦(𝑡 − 𝜏𝑀)

},                                                                    

where 𝒑 = 𝒑1 𝒑2…𝒑𝑀 is the general position of the 𝑚𝑡ℎ 𝑠𝑒𝑛𝑠𝑜𝑟 and  

𝜏𝑀 = 
𝑣(𝜃,𝜙)𝑇𝑷𝑚

c
                                                                                                                     (4.13)  

 is the time delay for the signal to reach the  𝑚𝑡ℎsensor. 

In the above  

𝑣(𝜃, 𝜙) = − [

𝑣𝑥(𝜃, 𝜙)

𝑣𝑦(𝜃, 𝜙)

𝑣𝑧(𝜃)

] = − [

𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠 𝜙

𝑠𝑖𝑛(𝜃) 𝑠𝑖𝑛(𝜙)

𝑐𝑜𝑠(𝜃)
],                                                           (4.14) 

where 𝑣𝑥(𝜃, 𝜙), 𝑣𝑦(𝜃, 𝜙) and 𝑣𝑧(𝜃)  are direction cosines along x, y and z axes, 

respectively. The negative sign arises due to the direction of the incident signal.  

Explicitly, using equation (4.12) and equation (4.14) in equation (4.13)   

𝜏𝑀 =
−1

𝜆𝑓
[sin ( 𝜃) cos ( 𝜙), sin ( 𝜃) sin ( 𝜙), cos ( 𝜃)] [

𝑥𝑘 cos (
2𝜋(𝑚−1)

𝑀
)

𝑥𝑘 sin (
2𝜋(𝑚−1)

𝑀
)

0

] =

           
𝑥𝑘 sin(𝜃)

𝜆𝑓
cos (𝜙 −

2𝜋(𝑚−1)

𝑀
) .                                                                                    (4.15) 

To convert the time domain signals into frequency domain, we took the Fourier transform 

of  

y (t, p) from which we got the 𝑚𝑡ℎ component to be 
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 𝑌𝑚(𝜔) = ∫ 𝑒−𝑖𝜔𝑡 𝑦(𝑡 − 𝜏ℓ)𝑑𝑡
∞

−∞
= 𝑌(𝜔)𝑒−𝑖𝜔𝑡 

           = 𝑌(𝜔)𝑒𝑥𝑝 {
𝑖2𝜋𝑥𝑘

𝜆
sin ( 𝜃) cos (𝜙 −

2𝜋(𝑚−1)

𝑀
)}  ,                                                              (4.16)    

where 𝜔 = 2𝜋𝑓  denotes angular frequency. The observations in frequency domain were 

written as     

        Y(𝜔) =

[
 
 
 
 
𝑌1(𝜔)
𝑌2(𝜔)
𝑌3(𝜔)
⋮

𝑌𝑀(𝜔)]
 
 
 
 

= 𝑌(𝜔)

[
 
 
 
 
 
 
 exp {𝑖

 2𝜋 𝑥𝑘  

𝜆
sin(𝜃) cos(𝜙)}  

exp {𝑖
 2𝜋𝑥𝑘   

𝜆
sin(𝜃) cos(𝜙 −

2𝜋

𝑀
)}

exp {𝑖
 2𝜋 𝑥𝑘  

𝜆
sin(𝜃) cos(𝜙 −

4𝜋

𝑀
)}

⋮

exp {𝑖
 2𝜋 𝑥𝑘  

𝜆
sin(𝜃) cos(𝜙 −

2𝜋(𝑀−1)

𝑀
)}]
 
 
 
 
 
 
 

.                      (4.17) 

Since observations in frequency domain consists of the scalar and complex part, the array 

manifold vector was given by the complex part since the scalar part was constant 

𝒂𝑈𝐻𝐴 =

[
 
 
 
 
 
 
 exp {𝑖

 2𝜋 𝑥𝑘  

𝜆
sin(𝜃) cos(𝜙)}  

exp {𝑖
 2𝜋𝑥𝑘   

𝜆
sin(𝜃) cos(𝜙 −

2𝜋

𝑀
)}

exp {𝑖
 2𝜋 𝑥𝑘  

𝜆
sin(𝜃) cos(𝜙 −

4𝜋

𝑀
)}

⋮

exp {𝑖
 2𝜋 𝑥𝑘  

𝜆
sin(𝜃) cos(𝜙 −

2𝜋(𝑀−1)

𝑀
)}]
 
 
 
 
 
 
 

  .                                                                     (4.18)        

4.1.1 Array Manifold Vector for Uniform Circular Array                                   

The same procedures for deriving the array manifold vector for the uniform hexagonal 

were used here. The general position of the 𝑚𝑡ℎ for 𝑚 = 1,2,3…M was given by  

        𝑷𝒎= [𝑅𝑐𝑜𝑠 (
2𝜋(𝑚−1)

𝑀
) , 𝑅𝑠𝑖𝑛 (

2𝜋(𝑚−1)

𝑀
) ,  0 ]

𝑇

                                                                      (4.19)   

                                                              

Explicitly, using equation (4.19) and equation (4.14) in equation (4.13)   
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𝜏𝑀 =
−1

𝜆𝑓
[sin ( 𝜃) cos ( 𝜙), sin ( 𝜃) sin ( 𝜙), cos ( 𝜃)] [

𝑅 cos (
2𝜋(𝑚−1)

𝑀
)

𝑅 sin (
2𝜋(𝑚−1)

𝑀
)

0

]     =

               
𝑅 sin(𝜃)

𝜆𝑓
cos (𝜙 −

2𝜋(𝑚−1)

𝑀
) .                       

To convert the time domain signals into frequency domain, we took the Fourier transform 

of  

y (t, p) from which we get the 𝑚𝑡ℎ component to be 

 𝑌𝑚(𝜔) = ∫ 𝑒−𝑖𝜔𝑡 𝑦(𝑡 − 𝜏ℓ)𝑑𝑡
∞

−∞
= 𝑌(𝜔)𝑒−𝑖𝜔𝑡 

           = 𝑌(𝜔)𝑒𝑥𝑝 {
𝑖2𝜋𝑅

𝜆
sin ( 𝜃) cos (𝜙 −

2𝜋(𝑚−1)

𝑀
)}       

The observations in frequency domain were written as  

Y(𝜔) =

[
 
 
 
 
𝑌1(𝜔)
𝑌2(𝜔)
𝑌3(𝜔)
⋮

𝑌𝑀(𝜔)]
 
 
 
 

= 𝑌(𝜔)

[
 
 
 
 
 
 
 exp {𝑖

 2𝜋 𝑅

𝜆
sin(𝜃) cos(𝜙)}  

exp {𝑖
 2𝜋𝑅  

𝜆
sin(𝜃) cos(𝜙 −

2𝜋

𝑀
)}

exp {𝑖
 2𝜋 𝑅

𝜆
sin(𝜃) cos(𝜙 −

4𝜋

𝑀
)}

⋮

exp {𝑖
 2𝜋 𝑅

𝜆
sin(𝜃) cos(𝜙 −

2𝜋(𝑀−1)

𝑀
)}]
 
 
 
 
 
 
 

                                     (4.20) 

Thus, the array manifold vector for a UCA was given by  

𝒂𝑈𝐶𝐴 =

[
 
 
 
 
 
 
 exp {𝑖

 2𝜋 𝑅

𝜆
sin(𝜃) cos(𝜙)}  

exp {𝑖
 2𝜋𝑅  

𝜆
sin(𝜃) cos(𝜙 −

2𝜋

𝑀
)}

exp {𝑖
 2𝜋 𝑅

𝜆
sin(𝜃) cos(𝜙 −

4𝜋

𝑀
)}

⋮

exp {𝑖
 2𝜋 𝑅

𝜆
sin(𝜃) cos(𝜙 −

2𝜋(𝑀−1)

𝑀
)}]
 
 
 
 
 
 
 

 .                                                                    (4.21) 
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4.2 Derivation of the Cramér-Rao bound for the uniform hexagonal array 

In this section a statistical data model was assumed, from the probability density function 

of the observed data vector the mean of the observed data was obtained, the mean of the 

observed data vector was used to derive the Fisher information matrix (FIM) of azimuth 

and polar angle. Finally, the inverse of the FIM gave the Cramér-Rao bound. 

 

A signal model collected by all the sensors at time t was expressed as [32] 

  𝐲(𝐦) =  𝐚 s(m) +  𝐧(𝐦)       𝑚 = 1,2,3………… . .𝑀,    

where s(m)  is the signal released at time  t, a is the array manifold vector that 

corresponded to the geometrical pattern under consideration and 𝒏(m) is the additive noise.  

The observed data vector followed multivariate normal/Gaussian distribution. For multiple 

snapshots the data model vector was assumed to be given by [32] 

         �̃� = 𝒔 ⊗ 𝒂(𝜃, 𝜙) + �̃�                                                                                                             (4.22) 

     Where  

�̃� = [𝒚1, 𝒚2, ⋯ , 𝒚𝑀]
𝑇 ,   𝒔 = 𝑠1, 𝑠2, ⋯ 𝑠𝑀,    𝒂 = 𝑎1, 𝑎2, ⋯ , 𝑎𝑀 𝑎𝑛𝑑  �̃� = [𝒏1, 𝒏2, ⋯ , 𝒏𝑀]

𝑇 

The pdf of  �̃� was given by [2] 

𝑝(�̃�|𝜽) =
𝟏

√|𝟐𝝅�̃�(𝜃,𝜙)|
exp {−

1

2
[�̃� − �̃�(𝜃, 𝜙)]𝐻�̃�(𝜃, 𝜙)−1[�̃� − �̃�(𝜃, 𝜙)]},                         (4.23)                                     

where   𝝁 ̃(𝜃, 𝜙) = 𝐸[�̃�] = 𝒔⊗ 𝒂(𝜃, 𝜙),                                                                     (4.24)                

�̃�(𝜃, 𝜙) =  𝐸{[�̃� − 𝝁 ̃(𝜃, 𝜙)][�̃� − 𝝁 ̃(𝜃, 𝜙)]𝐻} = 𝞼𝒏
𝟐𝑰{𝑇𝑀∗𝑇𝑀},                                   (4.25)                                                                                                                                             

𝐸[�̃�] represents the statistical expectation of �̃�, 𝑴 denotes the total number of sensors, 

𝑰{𝑇𝑀∗𝑇𝑀}  denotes an identity matrix of size 𝑇𝑀, superscript 𝐻  is the conjugate transpose 

and  �̃�  is the covariance matrix of y and it’s independent of θ and ϕ as shown in equation 

(4.25).  Direction of arrival estimation aims to estimate the polar angle of arrival θ and 

the azimuth angle of arrival ϕ, based on the observations �̃�.  We determined the FIM 

whose (𝑡, 𝑟)𝑡ℎ entry was given by equation (3.26). 



36 
 

 

Using equation (4.24) and equation (4.18) the partial derivative of 𝝁 with respect to 𝜃 was 

given as  

𝜕𝝁

𝜕𝜃
= 𝒔⊗

{
 
 

 
 

[
 
 
 
 
 𝑖

2𝜋𝑥𝑘

𝜆
cos(𝜃) cos(𝜙)

𝑖
2𝜋𝑥𝑘

𝜆
cos(𝜃) cos (𝜙 −

2𝜋

𝑀
)

⋮

𝑖
2𝜋𝑥𝑘

𝜆
cos(𝜃) cos (𝜙 −

2𝜋(𝑀−1)

𝑀
)]
 
 
 
 
 

⨀ 𝒂(𝜃, 𝜙)

}
 
 

 
 

,                                                   (4.26) 

𝜕𝝁

𝜕𝜙
= 𝒔⊗

{
 
 

 
 

[
 
 
 
 
 −𝑖

2𝜋𝑥𝑘

𝜆
sin(𝜃) cos(𝜙)

−𝑖
2𝜋𝑥𝑘

𝜆
sin(𝜃) sin (𝜙 −

2𝜋

𝑀
)

⋮

−𝑖
2𝜋𝑥𝑘

𝜆
sin(𝜃) sin (𝜙 −

2𝜋(𝑀−1)

𝑀
)]
 
 
 
 
 

⨀ 𝒂(𝜃, 𝜙)

}
 
 

 
 

,                                                (4.27) 

Where ⨀ and ⊗ denotes Hadamard product and Kronecker product respectively. 

Using equation (4.26) -(4.27) the elements of the Fisher information matrix were obtained 

as follows 

 𝐹𝜃,𝜃 = 2𝑅𝑒 {[
𝜕𝝁

𝜕𝜃
 ]
𝐻
[Г]−1 [

𝜕𝝁

𝜕𝜃
 ]}  =

2

𝜎𝑛
2 [
𝜕𝝁

𝜕𝜃
 ]
𝐻

[
𝜕𝝁

𝜕𝜃
 ] =               

          =   2 [
2𝜋𝑥𝑘 cos (𝜃)

𝜆𝜎𝑛
]
2

𝑠𝐻𝑠 [cos2(𝜙) + cos2 (𝜙 −
2𝜋

𝑀
) + ⋯+ cos2 (𝜙 −

2𝜋(𝑀−1)

𝑀
)] 

          = 2 [
2𝜋𝑥𝑘 cos (𝜃)

𝜆𝜎𝑛
]
2

𝜎𝑛
2 [1 + 1 +⋯+ 1]⏟          

𝑇 𝑡𝑖𝑚𝑒𝑠

∑ cos2 (𝜙 −
2𝜋(𝑚−1)

𝑀
)𝑀   

𝑚=1⏟                
𝑀

2

    

      where  
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𝑠𝐻𝑠 =

[
 
 
 
𝜎𝑠𝑒

−{2𝜋𝑓+𝜑}

𝜎𝑠𝑒
−{4𝜋𝑓+𝜑}

⋮
𝜎𝑠𝑒

−{2𝜋𝑓𝑇+𝜑}]
 
 
 
𝐻

[
 
 
 
𝜎𝑠𝑒

−{2𝜋𝑓+𝜑}

𝜎𝑠𝑒
−{4𝜋𝑓+𝜑}

⋮
𝜎𝑠𝑒

−{2𝜋𝑓𝑇+𝜑}]
 
 
 

=  𝜎𝑠
2 [

1
1
⋮
1

]            

∑ cos2 (𝜙 −
2𝜋(𝑚−1)

𝑀
)𝑀   

𝑚=1 =  ∑ cos2 (𝜙 −
2𝜋𝑚

𝑀
)𝑀−1   

𝑚=0         

   = ∑ [cos (
2𝜋𝑚

𝑀
) cos(𝜙) + sin (

2𝜋𝑚

𝑀
) sin(𝜙)]𝑀−1

𝑚=0  

 = ∑ [cos2 (
2𝜋𝑚

𝑀
) cos2(𝜙) + sin2 (

2𝜋𝑚

𝑀
) sin2(𝜙) +𝑀−1

𝑚=0

2 cos (
2𝜋𝑚

𝑀
) cos(𝜙) sin (

2𝜋𝑚

𝑀
) sin(𝜙)] 

  = cos2(𝜙)∑ cos2 (
2𝜋𝑚

𝑀
)𝑀−1   

𝑚=0 + sin2(𝜙)∑ sin2 (
2𝜋𝑚

𝑀
)𝑀−1   

𝑚=0 +
sin(2𝜙)

2
∑ 𝑠𝑖𝑛 (

4𝜋𝑚

𝑀
)𝑀−1   

𝑚=0  

∑ cos2 (
2𝜋𝑚

𝑀
)𝑀−1   

𝑚=0 = 1 + cos2 (
2𝜋

𝑀
) + cos2 (

4𝜋

𝑀
) + ⋯+ cos2 (

2𝜋(𝑚−1)

𝑀
)  

                                = 1 + cos2(2𝜙) + cos2(4𝜙) + ⋯+ cos2(2𝜙(𝑚 − 1)) 

                                = 1 +
1+cos2(2𝜙)

2
+
1+cos2(4𝜙)

2
+⋯+

1+cos2(2𝜙)(𝑚−1)

2
 

                          =
1

2
[2 + 1 + cos2(2𝜙) + 1 + cos2(4𝜙) + ⋯+ 1 + cos2(2𝜙)(𝑚 − 1)] 

                                   =
1

2
[𝑀 + 1 + cos2(2𝜙) + cos2(4𝜙) + ⋯+ cos2(2𝜙)(𝑚 − 1)] 

                                    =
1

2
[𝑀 + 1 +

sin(4𝜋+
2𝜋

𝑀
)−sin(

2𝜋

𝑀
)

2 sin(
2𝜋

𝑀
)

− cos(4𝜋)] =  
𝑀

2
 

 ∑ sin2 (
2𝜋𝑚

𝑀
) = sin2 (

2𝜋

𝑀
) + sin2 (

4𝜋

𝑀
) + ⋯+ sin2 (

2𝜋(𝑚−1)

𝑀
)  𝑀−1   

𝑚=0  

                                 = sin2(2𝜙) + sin2(4𝜙) + ⋯+ sin2(2𝜙(𝑚 − 1)) 
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                                  =
1−cos2(𝜙)

2
+
1−cos2(4𝜙)

2
+⋯+

1−cos2(2𝜙)(𝑚−1)

2
 

                                  =
1

2
[1 − cos2(2𝜙) + 1 − cos2(4𝜙) + ⋯+ 1 − cos2(2𝜙)(𝑚 − 1)] 

                                                   =
1

2
[𝑀 − [1 +

sin(4𝜋+
2𝜋

𝑀
)−sin(

2𝜋

𝑀
)

2 sin(
2𝜋

𝑀
)

− cos(4𝜋)]] =
𝑀

2
 , 

        ∑ 𝑠𝑖𝑛 (
4𝜋𝑚

𝑀
)𝑀−1   

𝑚=0 = sin (
4𝜋

𝑀
) + sin (

8𝜋

𝑀
) + ⋯+ sin (

4𝜋(𝑚−1)

𝑀
)  

                                    = sin(𝑟) + sin(2𝑟) + ⋯+ sin(𝑟(𝑚 − 1)) 

                                     =
cos(

2𝜋

𝑀
)−cos(4𝜋+

2𝜋

𝑀
)

2 sin(
2𝜋

𝑀
)

− sin(4𝜋) 

                                       =
cos(

2𝜋

𝑀
)−cos(

2𝜋

𝑀
)

2 sin(
2𝜋

𝑀
)

− sin(4𝜋) = 0 

 ∑ cos2 (𝜙 −
2𝜋(𝑚−1)

𝑀
)𝑀   

𝑚=1 = cos2(𝜙)∑ cos2 (
2𝜋𝑚

𝑀
)𝑀−1   

𝑚=0⏟            

=
𝑀

2

+

sin2(𝜙)∑ sin2 (
2𝜋𝑚

𝑀
)𝑀−1   

𝑚=0⏟          

=
𝑀

2

+
sin(2𝜙)

2
∑ 𝑠𝑖𝑛 (

4𝜋𝑚

𝑀
)𝑀−1   

𝑚=0⏟          
0

  

           𝐹𝜃,𝜃 = 4𝜋
2𝑀𝑇 (

𝑥𝑘

𝜆
)
2

(
𝜎𝑠

𝜎𝑛
)
2

cos2(θ).                                                                                     (4.28) 

    𝐹𝜙,𝜙 = 2𝑅𝑒 {[
𝜕𝝁

𝜕𝜙
 ]
𝐻
[Г]−1 [

𝜕𝝁

𝜕𝜙
 ]}  =

2

𝜎𝑛
2 [
𝜕𝝁

𝜕𝜙
 ]
𝐻

[
𝜕𝝁

𝜕𝜙
 ] =                                                                     

          =   2 [
2𝜋𝑥𝑘 cos (𝜃)

𝜆𝜎𝑛
]
2

𝑠𝐻𝑠 [cos2(𝜙) + cos2 (𝜙 −
2𝜋

𝑀
) + ⋯+ cos2 (𝜙 −

2𝜋(𝑀−1)

𝑀
)] 

          = 2 [
2𝜋𝑥𝑘 sin ( 𝜃)

𝜆𝜎𝑛
]
2

𝜎𝑛
2 [1 + 1 +⋯+ 1]⏟          

𝑇 𝑡𝑖𝑚𝑒𝑠

∑ sin2 (𝜙 −
2𝜋(𝑚−1)

𝑀
)𝑀   

𝑚=1⏟                
𝑀

2
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∑ sin2 (𝜙 −
2𝜋(𝑚−1)

𝑀
)𝑀   

𝑚=1 = ∑ sin2 (𝜙 −
2𝜋𝑚

𝑀
)𝑀−1   

𝑚=0   

                                          = ∑ [sin (
2𝜋𝑚

𝑀
) cos(𝜙) − cos (

2𝜋𝑚

𝑀
) sin(𝜙)]𝑀−1

𝑚=0

2

 

                                      = ∑ [sin2 (
2𝜋𝑚

𝑀
) cos2(𝜙) + cos2 (

2𝜋𝑚

𝑀
) sin2(𝜙) −𝑀−1

𝑚=0

                                                  2 cos (
2𝜋𝑚

𝑀
) cos(𝜙) sin (

2𝜋𝑚

𝑀
) cos(𝜙)] 

                                       = cos2(𝜙)∑ sin2 (
2𝜋𝑚

𝑀
)𝑀−1   

𝑚=0⏟          

=
𝑀

2

+ sin2(𝜙)∑ cos2 (
2𝜋𝑚

𝑀
)𝑀−1   

𝑚=0⏟            

=
𝑀

2

−

                                               
sin(2𝜙)

2
∑ 𝑠𝑖𝑛 (

4𝜋𝑚

𝑀
)𝑀−1   

𝑚=0⏟          
=0

=
𝑀

2
 

                              

                                  𝐹𝜙,𝜙 = 4𝜋
2𝑀𝑇 (

𝑥𝑘

𝜆
)
2

(
𝜎𝑠

𝜎𝑛
)
2

sin2(θ).                                                     (4.29) 

   𝐹𝜃,𝜙 = 𝐹𝜙,𝜃 =  2𝑅𝑒 {[
𝜕𝝁

𝜕𝜃
 ]
𝐻
[Г]−1 [

𝜕𝝁

𝜕𝜙
 ]}                                                                              (4.30) 

                          

=
4𝜋2𝑥𝑘

2𝜎𝑛
2 sin(𝜃) cos(𝜃)

𝜆2𝜎𝑛
2 [1 + 1 +⋯+ 1]⏟          

𝑇 𝑡𝑖𝑚𝑒𝑠

∑ 𝑠𝑖𝑛 (𝜙 −
2𝜋(𝑚−1)

𝑀
) 𝑐𝑜𝑠 (𝜙 −

2𝜋(𝑚−1)

𝑀
)𝑀   

𝑚=1⏟                            
=0

 = 0. 

The CRB were obtained as shown below  

                  [

[CRB(θ)]1,1
 

0

0 [CRB(ϕ)]2,2
 

] = [
𝐹𝜃,𝜃 𝐹𝜃,𝜙
𝐹𝜙,𝜃 𝐹𝜙,𝜙

]
−1

= [

1

𝐹𝜃,𝜃
0

0
1

𝐹𝜙,𝜙

],                     (4.31)        

From equation  (4.28) to (4.31)    
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𝐶𝑅𝐵𝑈𝐻𝐴(𝜃) =
1

𝐹𝜃,𝜃
= 

1

4𝜋2
1

𝑀𝑇
(
𝜆

𝑥𝑘
)
2

(
𝜎𝑛

𝜎𝑠
)
2

sec2(𝜃),                                                                     (4.32) 

𝐶𝑅𝐵𝑈𝐻𝐴(𝜙) =
1

𝐹𝜙,𝜙
= 

1

4𝜋2
1

𝑀𝑇
(
𝜆

𝑥𝑘
)
2

(
𝜎𝑛

𝜎𝑠
)
2

csc2(𝜃),                                                                  (4.33) 

where 𝑇 denotes the total number of time signals and 𝑀 is the total number of the sensors. 

4.2.1 Cramér-Rao bound for the uniform circular array 

Using equation (4.24) and equation (4.21)   

 

𝜕𝝁

𝜕𝜃
= 𝒔⊗

{
 
 

 
 

[
 
 
 
 
 𝑖

2𝜋𝑅

𝜆
cos(𝜃) cos(𝜙)

𝑖
2𝜋𝑅

𝜆
cos(𝜃) cos (𝜙 −

2𝜋

𝑀
)

⋮

𝑖
2𝜋𝑅

𝜆
cos(𝜃) cos (𝜙 −

2𝜋(𝑀−1)

𝑀
)]
 
 
 
 
 

⨀ 𝒂(𝜃, 𝜙)

}
 
 

 
 

,                                                      (4.34) 

𝜕𝝁

𝜕𝜙
= 𝒔⊗

{
 
 

 
 

[
 
 
 
 
 −𝑖

2𝜋𝑅

𝜆
sin(𝜃) cos(𝜙)

−𝑖
2𝜋𝑅

𝜆
sin(𝜃) sin (𝜙 −

2𝜋

𝑀
)

⋮

−𝑖
2𝜋𝑅

𝜆
sin(𝜃) sin (𝜙 −

2𝜋(𝑀−1)

𝑀
)]
 
 
 
 
 

⨀ 𝒂(𝜃, 𝜙)

}
 
 

 
 

,                                                 (4.35) 

Where ⨀ and ⊗ denotes Hadamard product and Kronecker product respectively. 

Using equation (4.26) and equation (4.35) -(4.36) the elements of the Fisher information 

matrix were obtained as follows 

 𝐹𝜃,𝜃 = 2𝑅𝑒 {[
𝜕𝝁

𝜕𝜃
 ]
𝐻
[Г]−1 [

𝜕𝝁

𝜕𝜃
 ]}  =

2

𝜎𝑛
2 [
𝜕𝝁

𝜕𝜃
 ]
𝐻

[
𝜕𝝁

𝜕𝜃
 ] =                                                          (4.36) 

          =   2 [
2𝜋𝑅 cos (𝜃)

𝜆𝜎𝑛
]
2

𝑠𝐻𝑠 [cos2(𝜙) + cos2 (𝜙 −
2𝜋

𝑀
) + ⋯+ cos2 (𝜙 −

2𝜋(𝑀−1)

𝑀
)] 
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          = 2 [
2𝜋𝑅 cos (𝜃)

𝜆𝜎𝑛
]
2

𝜎𝑛
2 [1 + 1 +⋯+ 1]⏟          

𝑇 𝑡𝑖𝑚𝑒𝑠

∑ cos2 (𝜙 −
2𝜋(𝑚−1)

𝑀
)𝑀   

𝑚=1⏟                
𝑀

2

 

           = 4𝜋2𝑀𝑇 (
𝑅

𝜆
)
2

(
𝜎𝑠

𝜎𝑛
)
2

cos2(θ) 

    𝐹𝜙,𝜙 = 2𝑅𝑒 {[
𝜕𝝁

𝜕𝜙
 ]
𝐻
[Г]−1 [

𝜕𝝁

𝜕𝜙
 ]}  =

2

𝜎𝑛
2 [
𝜕𝝁

𝜕𝜙
 ]
𝐻

[
𝜕𝝁

𝜕𝜙
 ] =                                                    (4.37) 

          =   2 [
2𝜋𝑅 cos (𝜃)

𝜆𝜎𝑛
]
2

𝑠𝐻𝑠 [cos2(𝜙) + cos2 (𝜙 −
2𝜋

𝑀
) + ⋯+ cos2 (𝜙 −

2𝜋(𝑀−1)

𝑀
)] 

          = 2 [
2𝜋𝑅 sin ( 𝜃)

𝜆𝜎𝑛
]
2

𝜎𝑛
2 [1 + 1 +⋯+ 1]⏟          

𝑇 𝑡𝑖𝑚𝑒𝑠

∑ sin2 (𝜙 −
2𝜋(𝑚−1)

𝑀
)𝑀   

𝑚=1⏟                
𝑀

2

 

           = 4𝜋2𝑀𝑇 (
𝑅

𝜆
)
2

(
𝜎𝑠

𝜎𝑛
)
2

sin2(θ) 

   𝐹𝜃,𝜙 = 𝐹𝜙,𝜃 =  2𝑅𝑒 {[
𝜕𝝁

𝜕𝜃
 ]
𝐻
[Г]−1 [

𝜕𝝁

𝜕𝜙
 ]}                                                                                 (4.38) 

                      = 

4𝜋2𝑅2𝜎𝑛
2 sin(𝜃) cos(𝜃)

𝜆2𝜎𝑛
2 [1 + 1 +⋯+ 1]⏟          

𝑇 𝑡𝑖𝑚𝑒𝑠

∑ 𝑠𝑖𝑛 (𝜙 −
2𝜋(𝑚−1)

𝑀
) 𝑐𝑜𝑠 (𝜙 −

2𝜋(𝑚−1)

𝑀
)𝑀   

𝑚=1⏟                            
=0

  = 0. 

From equation (4.31) and equation (4.36) -(4.38) 

𝐶𝑅𝐵𝑈𝐶𝐴(𝜃) =
1

𝐹𝜃,𝜃
= 

1

4𝜋2
1

𝑀𝑇
(
𝜆

𝑅
)
2

(
𝜎𝑛

𝜎𝑠
)
2

sec2(𝜃),                                                                    (4.39) 

𝐶𝑅𝐵𝑈𝐶𝐴(𝜙) =
1

𝐹𝜙,𝜙
= 

1

4𝜋2
1

𝑀𝑇
(
𝜆

𝑅
)
2

(
𝜎𝑛

𝜎𝑠
)
2

csc2(𝜃).                                                                   (4.40) 
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4.3 Comparison of the Cramér-Rao bound of uniform hexagonal array and that of 

uniform circular array    

The derived Cramér-Rao bound for the uniform hexagonal is compared with the Cramér-

Rao bound for the uniform circular array using the ratio in this section. The ratio 
𝐶𝑅𝐵𝑈𝐻𝐴

𝐶𝑅𝐵𝑈𝐶𝐴
  is  

analyzed into three possible scenarios, the first case is when the ratio 
𝐶𝑅𝐵𝑈𝐻𝐴

𝐶𝑅𝐵𝑈𝐶𝐴
  is less than 

one, the second case is when the ratio 
𝐶𝑅𝐵𝑈𝐻𝐴

𝐶𝑅𝐵𝑈𝐶𝐴
  is greater than one and finally, when the ratio 

𝐶𝑅𝐵𝑈𝐻𝐴

𝐶𝑅𝐵𝑈𝐶𝐴
  is equal  to one. These results are validated by graphical representation. 

 

From equation (4.32) -(4.33) and equation (4.39) -(4.40) the ratio of Cramér-Rao bound 

of uniform hexagonal array to that of uniform circular array is;  

 

𝐶𝑅𝐵𝑈𝐻𝐴(𝜃)

𝐶𝑅𝐵𝑈𝐶𝐴(𝜃)
=
𝐶𝑅𝐵𝑈𝐻𝐴(𝜙)

𝐶𝑅𝐵𝑈𝐶𝐴(𝜙)
= (

2

√3+[
2𝑘−1

𝑛−1
]
2
)

2

=:
𝐶𝑅𝐵𝑈𝐻𝐴

𝐶𝑅𝐵𝑈𝐶𝐴
                                                       (4.41) 

Where 𝐶𝑅𝐵𝑈𝐻𝐴 and 𝐶𝑅𝐵𝑈𝐶𝐴 denote CRBs of UHA and UCA respectively. 

We considered all possible scenarios of equation (4.41) as analyzed in the following 

cases. 

When the ratio 
𝐶𝑅𝐵𝑈𝐻𝐴

𝐶𝑅𝐵𝑈𝐶𝐴
   is greater than one  

Case 1:       (
2

√3+[
2𝑘−1

𝑛−1
]
2
)

2

> 1 ⟺ √3 + [
2𝑘−1

𝑛−1
]
2

< 2 ⟺ 𝑘 <
𝑛

2
.                              (4.42)  

Equation (4.42) for  

𝑛 = 4; 𝑘 = 1;𝑀 = 18
𝑛 = 6; 𝑘 = 1, 2;𝑀 = 30 

⋮
.                  

Example of case 1 consider condition 𝑛 = 6; 𝑘 = 1, 2;𝑀 = 30 

𝐶𝑅𝐵𝑈𝐻𝐴(𝜃) =  
1

4𝜋2
1

30𝑇
(
1.14707𝜆

𝑅
)
2

(
𝜎𝑛

𝜎𝑠
)
2

sec2(𝜃)                                                     (4.43)       

𝐶𝑅𝐵𝑈𝐶𝐴(𝜃) =  
1

4𝜋2
1

30𝑇
(
𝜆

𝑅
)
2

(
𝜎𝑛

𝜎𝑠
)
2

sec2(𝜃)                                                                 (4.44)   
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When the    
𝐶𝑅𝐵𝑈𝐻𝐴

𝐶𝑅𝐵𝑈𝐶𝐴
   is less than one  

Case 2:      (
2

√3+[
2𝑘−1

𝑛−1
]
2
)

2

< 1 ⟺ √3 + [
2𝑘−1

𝑛−1
]
2

> 2 ⟺ 𝑘 >
𝑛

2
                                 (4.45) 

This case is not a possible scenario since the general distance derived in equation (4.11) 

holds for 𝑘 not exceeding 
𝑛

2
 Thus it is established that under no circumstance will 

𝐶𝑅𝐵𝑈𝐻𝐴  be lower than 𝐶𝑅𝐵𝑈𝐶𝐴. 

When the ratio 
𝐶𝑅𝐵𝑈𝐻𝐴

𝐶𝑅𝐵𝑈𝐶𝐴
 is equal to one  

Case 3:      (
2

√3+[
2𝑘−1

𝑛−1
]
2
)

2

= 1 ⟺ √3 + [
2𝑘−1

𝑛−1
]
2

= 2 ⟺ 𝑘 =
𝑛

2
                                 (4.46) 

Equation (5.15) holds  
𝑛 = 2; 𝑘 = 1;𝑀 = 6
𝑛 = 4; 𝑘 = 2;𝑀 = 18 

⋮
. 

Example of case 3 consider condition 𝑛 = 6; 𝑘 = 1, 2;𝑀 = 30 

𝐶𝑅𝐵𝑈𝐻𝐴(𝜃) =  
1

4𝜋2
1

6𝑇
(
𝜆

𝑅
)
2

(
𝜎𝑛

𝜎𝑠
)
2

sec2(𝜃),                                                                  (4.47)     

𝐶𝑅𝐵𝑈𝐶𝐴(𝜃) =  
1

4𝜋2
1

6𝑇
(
𝜆

𝑅
)
2

(
𝜎𝑛

𝜎𝑠
)
2

sec2(𝜃).                                                                  (4.48)                                       

In the above, 𝑛 = 2, 4, 6…𝑁  denotes the total number of the sensors on one of the 

equilateral triangles of the uniform hexagonal array and 𝑀 is the total number of the 

sensors. 

 

4.3.1 Graphical Representation 

In this sub-section, the graphical analysis is provided to investigate the performance 

analysis of uniform hexagonal array and uniform circular in direction of arrival estimation 

accuracy. 
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Fig. 4. 1: The figure shows how the ratio 
𝐶𝑅𝐵𝑈𝐻𝐴

𝐶𝑅𝐵𝑈𝐶𝐴
 changes as n and k changes 

 

 

Fig. 4. 2: The figure shows how the ratio 
𝐶𝑅𝐵𝑈𝐻𝐴

𝐶𝑅𝐵𝑈𝐶𝐴 
 changes as 𝑘 <

𝑛

2
   varies. 
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Fig. 4. 3: The figure shows how the ratio 
𝐶𝑅𝐵𝑈𝐻𝐴

𝐶𝑅𝐵𝑈𝐶𝐴
  changes as 𝑘 =

𝑛

2
    varies. 

 

Fig. 4. 4: The figure shows how the ratio 
𝐶𝑅𝐵𝑈𝐻𝐴

𝐶𝑅𝐵𝑈𝐶𝐴
 changes as 𝑘 >

𝑛

2
    varies. 
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Fig. 4.1 to Fig. 4. 4 represent the graphical analysis of the ratio developed from the 

analytical results. Figure. 4. 1 shows that, the increase in 𝑛 and 𝑘 results into an increase 

in the ratio 
𝐶𝑅𝐵𝑈𝐻𝐴

𝐶𝑅𝐵𝑈𝐶𝐴
. Fig. 4.2 indicates that when 𝑘 <

𝑛

2
   increases, it results in a decrease 

in the ratio, implying that the uniform circular array performs better than uniform 

hexagonal array in this case. Since, the CRB of the UCA is a smaller as compared to that 

of UHA when the number of sensors is increased. When k =  2, the ratio is equal to one 

but at point 20;  30;  40   there is some depression this is as a result of bifurcation as 𝑛 

crosses some values. The values of the ratio at those points still equals to one as shown in 

Fig. 4. 3, implying that UHA and UCA have the same performance since their CRBs are 

equal as the number of sensors is increased. When the ratio is equal to one either UCA or 

UHA can be used in direction of arrival estimation. Finally, the case when 𝑘 >
𝑛

2
 is not a 

possible scenario case for the UHA since the ratio is converging to zero, as indicated in 

Fig. 4.4, but CRB for the UCA decreases with increase in the number of sensors, 

therefore, it  performs better than UHA in this case. Thus, UCA is more superior than 

UHA in direction of arrival estimation. 

 

Normalized Sensitivity Analysis 

Sensitive analysis is an algorithm that is used to determine how self-reliant variable 

values will influence a particular reliant variable under certain presumption. It helps to 

examine how sensitive the output is, by the changes in one input while holding the other 

input constant. Let 

𝐶𝑅𝐵𝑈𝐻𝐴

𝐶𝑅𝐵𝑈𝐶𝐴
= 

4

3+[
2𝑘−1

𝑛−1
]
2 = 

4(𝑛−1)2

3(𝑛−1)2+(2𝑘−1)2
                                                                        (4.49) 

The normalized sensitivity analysis of a parameter 𝝎 in 𝑓(𝜔) is given by 

 𝑆 =
𝜕𝑓

𝜕𝜔

𝜔

𝑓
. 

We can normalize about some point 𝑛  and 𝑘:  

𝑆𝑛
1 =

𝜕𝑅

𝜕𝑛

𝑛

𝑅
= 

2(1−2𝑘)2𝑛

(𝑛−1){(4+4(𝑘−1))}𝑘+3(𝑛−2)𝑛
.                                                                     (4.50) 

 

𝑆𝑘
1 =

𝜕𝑅

𝜕𝑘

𝑘

𝑅
= −

4(2𝑘−1)

(2𝑘−1)2+3(𝑛−1)2
.                                                                                  (4.51) 
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The normalized sensitivity of equation (4.50) shows that the ratio increases with increase 

in n,                                                                             

 since 𝑆𝑛
1 is always positive for 𝑛 ≥ 2 and 𝑘 ≥ 1. While equation (4.51) shows that the 

ratio decreases in k since is always negative for 𝑛 ≥ 2 and 𝑘 ≥ 1. 

 

4.4 Discussion  

From the above results the array manifold vector and CRB for the uniform hexagonal 

array have been derived. It was observed that when the number of sensors increases the 

CRB for the UHA reduces, thus for the direction of arrival estimation the UHA can be 

employed when the number of sensors is increased. From the comparison of the CRB for 

UHA and that of UCA it was observed that in the first case the 𝐶𝑅𝐵𝑈𝐻𝐴 were higher as 

compared to 𝐶𝑅𝐵𝑈𝐶𝐴, implying that UCA has better performance as compared to UHA 

for the accuracy of DOA estimation.  

 

In this case the uniform circular array still had better estimation accuracy for DOA 

estimation. In the second case when the ratio was equal to one UHA and UCA had equal 

CRB, thus having the same performance for the direction-finding estimation. In the final 

case either UHA or UCA can be used for direction finding. In the third case when the 

ratio was greater than one, it was observed that this case was not a possible scenario since 

the general distance obtained in equation (4.11) holds for 𝑘 not exceeding 
𝑛

2
  . Thus, it 

was established that under no circumstance will 𝐶𝑅𝐵𝑈𝐻𝐴  be lower than 𝐶𝑅𝐵𝑈𝐶𝐴.  
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion  

In this section, a summary of the results on the array manifold vector, Cramér-Rao bound 

and comparison of the Cramér-Rao bound for UHA and UCA is given.  

 

This project suggested a new approach to estimate the accuracy of DOA estimation with 

Cramér-Rao bound through the uniform hexagonal array. This performance is 

accomplished first by deriving the array manifold vector for the uniform hexagonal array. 

The second step applies the array manifold vector obtained from the first step, to the 

mean of the observed data vector in order to derive the Cramér-Rao bound for UHA. 

Finally, the accuracy of DOA is achieved by comparing the derived Cramér-Rao bound 

for UHA with the Cramér-Rao bound for UCA. The main contents of this research work 

are summarized as follows; Cramér-Rao bound for uniform hexagonal array decreases 

with an increase in the number of sensors, therefore, UHA can be used in direction of 

arrival estimation when the number of sensors increases. The comparison between 

hexagonal and circular arrays shows that hexagonal array geometry gives slightly higher 

Cram´er-Rao bound by approximately 

 
𝐶𝑅𝐵𝑈𝐻𝐴(𝜃)

𝐶𝑅𝐵𝑈𝐶𝐴(𝜃)
=
𝐶𝑅𝐵𝑈𝐻𝐴(𝜙)

𝐶𝑅𝐵𝑈𝐶𝐴(𝜙)
=

2

√3+[
2𝑘−1

𝑛−1
]
2
                                                                             (5.11) 

with respect to circular array. The CRB for the UHA is higher as compared to the CRB of 

UCA. 

Therefore, uniform circular array has better estimation accuracy for the DOA estimation 

as compared to the uniform hexagonal array. This study contributes to the improvement of 

wireless communication, radar, military surveillance and speech among others. Therefore, 

wireless network designers, radar designers, and military surveillance designers can 

employ this method and geometry to improve their reliabilities when the number of sensors 

increases. 
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5.2 Recommendation for future work 

This work was proposed to determine the accuracy of direction of arrival estimation using 

uniform hexagonal array employing CRB. In this section, we address other geometries and 

methods that can be investigated in future studies. Although the direction of arrival 

estimation theory and other technologies in an array sensor setting have become well 

established some further investigations can be conducted.  

 

Current research efforts have paid more attention to the polygon with equal inter-sensor 

spacing. The non-uniform polygons for the direction of arrival estimation need to be 

addressed. One dimension and two-dimension uniform arrays are in place, but little 

research on three-dimension arrays has been done. Three-dimension investigation is more 

in accordance with real-time environments where three angles of arrival are needed. More 

researchers are concerned with the direction of arrival without considering the factors that 

affect DOA estimation such as, electromagnetic interference, channel band with 

inconsistency, and mutual coupling. The mutual coupling between the sensors distorts the 

array output signal and degrades the performance of DOA estimation. Its coefficient can 

be updated in an adaptive manner to guarantee convergence. The adaptation of all other 

geometries using CRB can be investigated in the same way and their performance can be 

compared. Moreover, trying to reproduce the results with a MATLAB will be an interesting 

step. Finally, the performance of the geometries proposed in this research can be analyzed 

more profoundly by evaluating the effects of other parameters such as signal-to-noise ratio, 

different inter-sensor spacing and the number of snapshots.  



50 
 

REFERENCES 

[1] N. A. Dheringe and B. N. Bansode, “Performance Evaluation and Analysis of 

Direction of Arrival Estimation Using MUSIC, TLS ESPRIT and Pro ESPRIT 

Algorithms”, International Journal of Advanced Research in Electrical, Electronics and 

Instrumentation Engineering, vol. 4(6), pp. 4948-4958, 2015. 

[2] S. M. Kay, “Fundamental of Statistical Signal Processing: Estimation Theory”, 

Upper Saddle River, New Jersey: Prentice Hall, 1993. 

[3] M. A. Ihedrane and B. R. Seddik, “Direction of arrival estimation using MUSIC, 

ESPRIT and maximum-likelihood algorithms for antenna arrays,” Walailak Journal of 

Science and Technology (WJST), vol. 13, no. 6, pp. 491502, 2015. 

[4] E. Aboutanios, A. Hassanien, A. El-Keyi, Y. Nasser, and S. A. Vorobyov, 

“Advances in DOA Estimation and Source Localization”, International Journal of 

Antennas and Propagation, 2017. 

[5] Y. E. G. Guzman, “Compressed Sensing Algorithms for Direction of Arrival (DoA) 

Estimation”, 2017. 

[6] R. A. Mendez, J. F. Silva, R. Orostica, and R. Lobos, “Analysis of the Cram´er-

Rao bound in the joint estimation of astrometry and photometry,” Publication of 

Astronomical Society of the Pacific 2016, vol. 942, pp. 798, 2014. 

[7] Z. Xiaofei, L. Jianfeng, and X. Lingyun, "Novel two-dimensional DOA estimation 

with L-shaped array," EURASIP Journal on Advances in Signal Processing, pp. 1-7, 2011. 

[8]  J. Chao, E. S. Ward, and R. J. Ober, “Fisher information theory for parameter 

estimation in single molecule microscopy,” vol. 33, no. 7, pp. B36-B57, 2016. 

[9] G. P. Gera and B. Mulgrew, “Antenna array Cramer-Rao bound design by element 

relocation,” In 2009 17th European Signal Processing Conference, pp. 1141-1145, 2009.  

[10] M. Li, Y. Lu and B. He, “Array signal processing for maximum likelihood 

direction-of-arrival estimation,” Journal of Electrical and Electronic Systems, vol. 3, pp. 

117, 2013. 

[11]  J. T. Kim, S. T. Kim, and K. W. Lee, “Ambiguity analysis method for the calibrated 

array manifold,” 2013.  

[12] Z. Tian and H. L. Van Trees, “DoA estimation with hexagonal arrays,” In 

Proceeding of the 1998 IEEE International Conference on Acoustic, Speech and Signal 

processing, ICASSP’98, vol. 4, pp. 2053-2056, 1998. 

[13]  L. Gupta and R. P. Singh, “Direction of arrival estimation,” International Journal 

of Advanced Engineering Technology, 2010.  



51 
 

[14] B. Sun, “MUSIC based on uniform circular array and its direction-finding 

efficiency,” Inte. J. Sign. Proc. Syst, vol. 1, pp. 273-277, 2013.  

[15] T. Li and A. Nehorai, “Maximum likelihood direction finding in spatially colored 

noise fields using sparse sensors arrays,” IEEE Transaction on Signal processing, vol. 

59(3), ppp.1048-1062, 2011. 

[16] E. Kwizera, E. Mwangi, and D. B. Konditi, “Performance Evaluation of Direction 

of Arrival Estimation using Uniform and Non-uniform Linear Arrays,” Journal of 

sustainable research in engineering, vol. 3, no. 2, pp. 29-36, 2017.  

[17] A. Vesa, “Direction-of-Arrival Estimation in case of Uniform Sensor Array using 

the MUSIC Algorithm,” Transactions on electronics and communication, vol. 56, pp. 40.  

[18] H. Gazzah, J. P. Delmas, and S. M. Larsys, “Direction-finding arrays of directional 

sensors for randomly located sources,” IEEE Transactions on Aerospace and Electronic 

Systems, vol. 52, pp. 1995-2003, 2016. 

[19] B. J. Jackson, S. Rajan, B. J. Liao and S. Wang, “Direction of arrival estimation 

using directive antennas in uniform circular arrays,” IEEE Transactions on Antennas and 

propagation, vol. 2, pp. 736-747, 2015.  

[20] G. Efstathopoulos and A. Manikas, “Extended array manifolds: Functions of array 

manifolds”, IEEE Transactions on Signal Processing, vol. 59(7), pp. 3272-3287, 2011. 

[21] D. M. Kitavi, H. Tan, and K. T. Wong, “A regular tetrahedral array whose 

constituent sensors fail randomly—A lower bound for direction-of-arrival estimation”, 

In 2016 Loughborough Antennas & Propagation Conference (LAPC) IEEE pp. 1-5, 2106.  

[22] D. M. Kitavi, T. C. Lin, and K. T. Wong, “A tetrahedral array of isotropic sensors, 

each suffering a random complex gain—the resulting hybrid Cramér-Rao bound for 

direction finding”, In 2016 IEEE National Aerospace and Electronics Conference 

(NAECON) and Ohio Innovation Summit (OIS) IEEE, pp. 412-415), 2016.  

 

[23] S. Bindu, G. Singh, and I. Sarkar, “Study of DOA Estimation Using Music 

Algorithm,” International Journal of Scientific & Engineering Research, vol. 6, pp. 2229-

5518, July 2015. 

[24]  S. N. Bhuiya, F. Islam, and M. A. Matin, “Analysis of Direction of arrival 

techniques using uniform linear array,” International Journal of Computer Theory and 

Engineering, vol. 4, pp. 931, 2012. 

 

[25]  X. Yuan, “Cramer-Rao bound of the direction-of-arrival estimation using a 

spatially spread electromagnetic vector-sensor,” In statistical signal processing workshop, 

pp. 1-4, June 2011.  

 



52 
 

[26] P. Gupta and V. Verma, “Optimization of MUSIC and Improved MUSIC 

Algorithm to Estimate Direction of Arrival” International Journal of Image, Graphics and 

Signal Processing, pp. 8(12), vol. 30, 2016. 

 

[27] J. Serra, L. Blanco, and M. Najar, “Cramer-Rao bound for time-delay estimation in 

the frequency domain”, In 2009 17th European signal processing conference, pp. 1037-

1041, 2009. 

 

[28] G. P. Gera and B. Mulgrew, “Antenna array cram´er-rao bound design by element 

relocation”, In 2007 17th European signal processing conference, pp. 1141-1145, 2009. 

 

[29] X. Yuan, “Cramér-Rao bounds of direction of arrival and distance estimation of a 

near field incident source for an acoustic vector sensor: polynomial-phase source”, IET 

Radar, sonar, and navigation, vol. 6, pp. 638-648, 2012.  

[30] P. Stoica, A. Nehorai, “Performance study of conditional and unconditional 

direction of arrival estimation,” IEEE Trans. on Acoustics Speech and Signal Processing, 

vol. 38, no. 10, pp. 1783-1795, October 1990. 

[31]  H. Abeida and J. P. Delmas, “Gaussian Cramer-Rao bound for direction estimation 

of non-circular signals in unknown noise fields”, IEEE Transactions on Signal processing, 

vol. 53(12), pp. 4610-8, 2005. 

[32] D. M. Kitavi, K. T. Wong, and C. C. Hung, “An L-Shaped Array with 

Nonorthogonal Axes-Its Cram´er Rao Bound for Direction Finding,” IEEE Transactions 

on Aerospace and Electronic Systems, vol. 54, pp. 486492, 2017. 

[33] M. A. Yaqoob, A. Mannesson, B. Bernhardsson, N. R. Butt, and F. Tufvesson, “On 

the performance of random antenna arrays for direction of arrival estimation,” In 

Communications Workshops (ICC), 2014 IEEE International Conference, pp. 193-199, 

June 2014. 

 

[34] J. Shim, H. Park, G. Suk, C. B. Chae, and D. K. Kim, “Cram´er-Rao Lower Bound 

for DoA Estimation with RF Lens-Embedded Antenna Array,” arXiv preprint arXiv, pp. 

1612.04130, 2016. 

[35] Y. B. Nechaev and I. W. Peshkov, “Measuring of False Peaks Occurring via Planar 

Antenna Arrays DOA Estimation,” International Journal of Advances in 

Telecommunications, Electrotechnics, Signals and Systems, vol. 22, pp. 4551, May 2017. 

[36] Y. Nuchae and I. Peshkov, “Accuracy Researching of Direction-of-Arrival 

Estimation Via Music for Circular, Octagonal, Hexagonal and Rectangular Antenna 

Arrays”, International Journal of Research in Engineering and Science (IJRES), vol. 4, pp. 

08-15, 2016. 



53 
 

[37] F. Römer and M. Haardt, “Deterministic Cramér-Rao bounds for strict sense non-

circular sources,” In Proc. ITG/IEEE Workshop on Smart Antennas (WSA), February, 

2007. 

[38] A. M. Montaser, K. R. Mahmoud, A. B. Abdel-Rahman and H. A. Elmikati, 

“Circular, Hexagonal and Octagonal Array Geometries for Smart Antenna System Using 

Hybrid CFO-HC Algorithm,” Journal of Engineering Sciences, Assiut University, vol. 40, 

no. 6, pp. 1715-1732, November 2012. 

[39] K. R. Mahmoud, M. El-Adawy, and S. M. M. Ibrahem, “A comparison between 

circular and hexagonal array geometries for smart antenna systems using particle swarm 

optimization algorithm”, Progress in Electromagnetics Research, pp. 75-90, 2007.  

[40] S. Kiani and A. M. Pezeshk, “A Comparative Study of Several Array Geometries 

for 2D DOA Estimation”, Procedia computer science, vol. 58, pp. 18-25, 2015. 

[41] S. Sharma, G. Singh, and I. Sarkar, “Study of DOA Estimation Using Music 

Algorithm”, International Journal of Scientific & Engineering Research, vol. 6, 2015. 

[42] M. Devendra and K. Manjunathachari, “DOA estimation of system using MUSIC 

method,” In Signal Processing and Communication Engineering Systems International 

Conference, pp. 309-313, January 2015. 

[43] U. Baysal and R. L. Moses, “Optimal Array Geometries for Wideband DOA 

Estimation OHIO”, state univ columbus dept of electrical engineering, 2001.  

[44] S. Cho, K. J. You, and H. C. Shin, “A new direction-of-arrival estimation method 

using automotive radar sensor arrays”, International Journal of Distributed Sensor 

Networks, vol. 13(6), pp. 1550147717713628, 2017. 

[45] H. Xiong, “Antenna array geometries and algorithms for direction of arrival 

estimation,” Doctoral dissertation, University of Nottingham, 2013. 

[46] C. M. Tan, M. A. Beach, and A.R. Nix, “Problems with direction finding using 

linear array with element spacing more than half wavelength”, 1st Annual COST 273 

Workshop, Espoo, Finland, 2002. 

[47]  S. Kiani and A. M. Pezeshk, “A comparative study of several array geometries for 

2D DOA estimation,” Procedia Computer Science, vol. 58, pp. 18-25, 2015. 

[48] X. Lan, L. Wan, G. Han, and J. J. Rodrigues, “A novel DOA estimation algorithm 

using array rotation technique,” Future Internet, vol. 6, pp. 155-170, 2014. 

 

[49] G. Peter, X. Angeliki and M. Christoph, “Multiple and single snapshots 

compressive beamforming”, The Journal of Acoustical Society of America, pp. 1 - 12, 

August 2015. 



54 
 

 

[50] R. Joshi and D. Ashwinikumar, “Direction of arrival estimation using MUSIC 

algorithm,” International Journal of Research in Engineering and Technology, vol.  3, pp. 

633-636, 2014. 

 

[51] J. G. Hong, W. H. Ahn, and B. S. Seo, “Compensation of Mutual Coupling in an 

Antenna Array for Direction of Arrival Estimation”, pp. 599-603, 2013.  

[52] M. Sitakanta and M. Mainak, “A Novel 2 directional blind direction of arrival 

estimation algorithm for smart antenna”, International Journal of Engineering Research 

and Technology, vol. 06, pp. 133 - 140, June 2015. 

[53] F. Römer and M. Haardt, “Deterministic Cramér-Rao bounds for strict sense non-

circular sources,” In Proc. ITG/IEEE Workshop on Smart Antennas (WSA), 2007, 

February. 

[54] D. M. Kitavi, K. T. Wong, M. Zou, and K. Agrawal, “Lower bound of the 

estimation error of an emitter's direction-of-arrival/polarisation, for a collocated triad of 

orthogonal dipoles/loops that fail randomly,” The institution of engineering and 

technology, vol. 11, pp. 961-970, 2017. 

 

  



55 
 

APPENDICES 

Appendix I: Note on publication 

Paper Published 

G. W. Ndiritu, D. M. Kitavi, and C. G. Ngari, “Cramér-rao bound of direction finding 

using uniform hexagonal array”, Journal of advances in Mathematics and computer 

science, vol. 32(6), pp. 1-14, 2019. 

 

 

 

 

 

 

 

 

 

 

 


