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A B S T R A C T   

Pigeon pea is a versatile pulse crop grown in semi-arid regions of Kenya; however, its production is affected by 
plant-parasitic nematodes. The current study was undertaken to investigate the diversity of nematodes and the 
influence of soil properties on their diversity in monocrop pigeon pea fields in Mbeere North, Embu County, 
Kenya. Soil samples were collected from Gatunguru B, Gwakaithi, Itururi, Kambungu, Kanyueri, Karigiri, 
Mbangua and Njarange regions. From each field, soil samples were collected from a depth of 25 cm using W- 
shaped sampling pattern. The nematodes were identified to the genus level using morphological features. In 
total, 46 nematode genera assigned to five trophic levels were identified across the eight regions. Abundance of 
Meloidogyne, Rotylenchulus, Longidorus, Acrobeloides, Cervidellus, Panagrolaimus, Prismatolaimus and Wilsonema 
varied markedly among the eight regions. Bacterivores belonging to colonizer-persister group 2 were the most 
prevalent group. There were no differences in Pielou’s evenness, genus richness, Shannon and Simpson diversity 
indices across the regions. Canonical correspondence analysis indicated significant correlations between certain 
nematode genera and soil attributes with the first two axes accounting for 56.65% of the variance. Acrobeloides 
correlated positively with Mg, C, Mn and N, and negatively with Fe. The occurrence of Hoplolaimus and Meso
rhabditis was associated negatively with soil pH, clay and Ca, and positively with sand. The present work reveals 
a high abundance of economically important PPN in monocrop pigeon pea which necessitates that appropriate 
nematode management programs are implemented.   

1. Introduction 

Pigeon pea (Cajanus cajan) is a versatile and valuable pulse crop that 
is mainly cultivated in developing countries in sub-Saharan Africa and 
Asia [1]. Pigeon pea can be grown in diverse environments in different 
cropping systems due to its unique characteristics such as drought 
tolerance, nitrogen-fixing ability, low input requirements and wide 
temporal variation in maturation period (90–300 days) [2]. It is a cheap 
source of essential nutrients such as proteins, minerals, vitamins and 
carbohydrates. It is also used as feed for fish, livestock, pigs and poultry 
[3,4]. Pigeon pea is grown on around 6.10 million ha in the world with 
an annual mean production of 0.82 t/ha [5]. In Kenya, pigeon pea ranks 
as the third most important crop after common beans and cowpeas and 
its grown on estimated acreage of about 133,525 ha [6,7]. From this 
area, the average pigeon pea yield is about 0.54 t/ha which is relatively 
lower than the potential yield (1.5–2.5 t/ha) [8]. Total yield production 
and productivity of pigeon pea are quite low despite a considerable in
crease in acreage under pigeon pea cultivation [9,10]. 

The main cause of low yields in pigeon pea is linked to its suscepti
bility to several pests and diseases [11]. Among the pests, plant-parasitic 
nematodes (PPN) such as Meloidogyne spp., Heterodera spp., Rotylen
chulus spp., and Pratylenchus spp. are responsible for enormous eco
nomic losses in pigeon pea [12]. Meloidogyne spp. induces root galls, 
followed by a change in cell morphology, resulting in the accumulation 
of giant cells in the root cortex. Heterodera spp. form syncytia in the root 
stele characterized by pearly appearance while Rotylenchulus spp. in
duces dirty root disease. Pratylenchus spp. stimulates root necrotic le
sions [9,13]. Worldwide, PPN are important pests causing huge crop 
losses of US $ 173 billion each year [14]. In the US, Heterodera glycines 
causes substantial yield reductions in soybean annually [15,16]. Meloi
dogyne spp. remains one of the most damaging nematodes in agriculture 
attacking a wide array of crops such as chickpea, pigeon pea and green 
grams [12]. It causes about 21% yield losses in chickpea in India per 
year amounting to ₹ 4867.27 million [17]. Rotylenchulus spp. causes 
21.19%, 32.84% and 80% yield losses in green gram, pigeon pea and 
chickpea, respectively [17]. On a global scale, Pratylenchus spp. are 
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considered as the third most damaging nematode for numerous crops, 
including legumes, maize, sugarcane and potatoes [18–20] although 
their impact is often overlooked. Kimenju et al. [21] projected that 
Pratylenchus spp. can cause >10% in maize yield losses in East Africa. 
Furthermore, Meloidogyne spp. and Heterodera cajani have been observed 
to cause 8–35% and 14–30.1% yield losses in pigeon pea, respectively 
[22]. Singh [23] and Abd-Elgawad and Askary [24] reported that PPN 
accounts for around 12.3–13.2% of the yield loss in pigeon pea per 
annum. In terms of research, pigeon pea has often been regarded as an 
“orphan crop” compared with the other pulse crops [3,25]. Similarly, 
compared to other pests in pigeon pea, PPN has been neglected in terms 
of research despite their detrimental effects in various crops [26]. 

Unlike PPN, free-living nematodes (FLN) are beneficial organisms 
that constitute 60–80% of the entire soil nematode community [27]. 
Free-living nematodes occupy various trophic levels as primary, sec
ondary and tertiary consumers within the soil food web [28], hence 
linking below- and above-ground processes in terms of soil fertility and 
plant productivity [29]. These nematode feeding groups can affect 
ecological processes either directly or indirectly. It is well documented 
that FLN greatly enhances plant growth indirectly by improving nutrient 
availability and uptake through the soil microbial loop mechanism [30, 
31]. For instance, certain FLN feed on soil microbes such as bacteria and 
fungi and in the process they release excess nutrients that are taken up 
by the plants [31,32]. The activity and density of these nematodes can 
be regulated by predatory nematodes further modifying availability of 
nutrients [33]. Due to their ecological importance, FLN have been 
explored in several ecosystems including farmland agroecosystems [34, 
35], forests [36] and grasslands [37]. Trap et al. [38] recorded signifi
cant increase in uptake of P by Pinus pinaster due to the presence of 
Rhabditis spp. Acrobeloides spp. mediated increased uptake of unlabeled 
P by rice [30] and under different agricultural practices it affected the 
plant biomass and nutrient content [32]. The abundance of nematodes is 
affected by environmental factors such as soil attributes including clay, 
organic matter, bulk density, moisture levels, nitrogen, magnesium and 
potassium [39,40]. The close link between diversity, structure and 
abundance of FLN with soil environment makes these nematodes a 
useful basis for assessing the quality of the soil food web and nutrients 
availability and uptake by plants [41]. 

There is a paucity of information regarding the abundance, diversity 
and distribution of FLN in African agro-ecosystems [34,42]. Information 
on nematodes associated with pigeon pea in Kenya is scarce despite the 
known harmful impacts of PPN and beneficial values of FLN. Given the 
lack of this basic information, the present work was undertaken to assess 
the PPN and FLN genera associated with pigeon pea in Kenya. We also 
aimed to establish the relationship between the structure of the nema
tode community of pigeon pea with soil physico-chemical 
characteristics. 

2. Materials and methods 

2.1. Site description and sampling 

This work was conducted in Mbeere North sub-county, Embu 
County, Kenya (Table 1). The mean rainfall and temperature recorded in 
the area during the sampling period was 550 mm and 20 ◦C, respec
tively. We sampled fields (0.5–2 acres) that were cultivated with mono 
crop pigeon pea for more than six years under similar farming practices. 
The most commonly practiced type of soil management in the area is the 
input of organic amendment (cow manure) at a rate of 4640 kg/ha. A 
total of 24 pigeon pea fields in eight regions of Mbeere North sub-county 
were sampled in January 2021. In each field, three soil samples were 
taken using a soil auger (3.5 cm in diameter) at a depth of 25 cm. Each 
soil sample was collected along 3 separate W-shaped “sample walks”, 
consisting of 30 sampling points. The distance between the two sam
pling points was 10 m. From each “sample walk”, three 250 g soil 
composite cores were taken for nematode extraction, whereas 1 kg soil 

sample was used for soil physicochemical analysis [43] (Table 1). 

2.2. Nematode processing and enumeration 

A 250 g soil sample was placed in filter trays for nematode extraction 
following the modified Baermann method for 48 hours [44]. After 
extraction, nematodes were heat-killed and fixed in a Golden solution 
according to the protocol by Hopper et al. [44]. The extracted nema
todes were counted and identified to the genus level using a compound 
microscope (model DM750 Leica, Wetzlar, Germany). Nematode genera 
were grouped into five trophic groups [45]. Following this classification, 
the identified nematode genera in each region were ordered into her
bivores, fungivores, omnivores, bacterivores and predators. Nematode 
genera within each trophic level were further assigned to respective 
colonizer-persister (cp) groups [33]. The value of c-p ranges from cp-1 
(r-strategists or colonizers) to cp-5 (K-strategists or persisters). Those 
in cp-1 are characterized by high fecundity, short generation times and 
short lifecycles. Those in cp-5 have longer generation times, lower 
fecundity and longer life cycles [33]. The Shannon diversity, genus 
richness, Simpson diversity and Pielou’s evenness were determined for 
each region. 

2.3. Soil physico-chemical analysis and weather data 

The soil physico-chemical characteristics including soil pH, total 
organic carbon, nitrogen, sand, clay, silt, pH, phosphorus, potassium, 
calcium, magnesium, manganese, copper, iron, zinc, and sodium were 
evaluated at the Kenya Agriculture and Livestock Research Organiza
tion, National Agricultural Research Laboratories as described [46–49]. 
Temperature and rainfall data were obtained from the Kenya Meteoro
logical Department, Kenya. 

2.4. Data analysis 

Prior to analysis, nematode abundance data was evaluated for 
normality using the Shapiro-Wilk test. To fulfil the criteria for statistical 
analysis, data transformation (log(x+1)) was executed where necessary. 
Differences in nematode genera abundances and diversity across the 
eight regions were determined by use of one-way analysis of variance 
(ANOVA) using R software. The Shannon diversity, genus richness, 
Simpson diversity and Pielou’s evenness in each region were computed 
with the use of vegan library in R [50]. The canonical correspondence 
analysis (CCA) was employed to explore the distribution of nematode 
genera abundance in relation to soil physico-chemical attributes using 
the R package vegan [50]. 

3. Results 

Overall, 46 nematode genera assigned to five trophic groups were 
identified across the eight regions as given in Table 2. Of these, bac
terivores represented by 17 genera were the most dominant, followed by 

Table 1 
Soil sampling sites in Gatunguru B, Gwakaithi, Itururi, Kambungu, Kanyueri, 
Karigiri, Mbangua and Njarange, Embu County, Kenya.  

Province County Region Sampling 
Field 

Latitude Longitude 

Eastern Embu Gatunguru 
B 

F1 0◦29′26.7"S 37◦43′31.4"E 

Gwakaithi F2 0◦27′55.9"S 37◦44′01.0"E 
Itururi F3 0◦30′16.8"S 37◦45′18.2"E 
Kambungu F4 0◦28′21.3"S 37◦48′43.5"E 
Kanyueri F5 0◦27′14.5"S 37◦45′22.8"E 
Karigiri F6 0◦28′10.1"S 37◦41′49.6"E 
Mbangua F7 0◦27′53.5"S 37◦48′42.2"E 
Njarange F8 0◦27′36.7"S 37◦48′35.1"E  
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Table 2 
Nematode genera abundance (mean ± standard error) in 250 g of soil collected from Gatunguru B, Gwakaithi, Itururi, Kambungu, Kanyueri, Karigiri, Mbangua and 
Njarange regions, Embu County, Kenya.  

Genus Cp - 
value 

Gatunguru B Gwakaithi Itururi Kambungu Kanyueri Karigiri Mbangua Njarange F - 
value 

P - value 

Mean ± SE Mean ± SE Mean ±
SE 

Mean ± SE Mean ± SE Mean ± SE Mean ±
SE 

Mean ± SE   

Herbivores 
Helicotylenchus 3 4.3 ± 4.3 47.7 ± 24.1 0.0 ± 0.0 39.0 ± 15.0 34.7 ±

28.4 
0.0 ± 0.0 4.3 ± 4.3 4.3 ± 4.3 2.068 0.108 

Hoplolaimus 3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 4.3 ± 4.3 0.0 ± 0.0 0.0 ± 0.0 1.000 0.466 
Longidorus 5 0.0 ± 0.0 8.7 ± 8.7 43.3 ±

26.4 
34.7 ± 8.7 34.7 ±

21.7 
4.3 ± 4.3 39.0 ±

13.0 
34.7 ± 15.6 3.402 0.020* 

Malenchus 2 0.0 ± 0.0 0.0 ± 0.0 8.7 ± 8.7 4.3 ± 4.3 13.0 ±
13.0 

0.0 ± 0.0 13.0 ±
13.0 

0.0 ± 0.0 0.583 0.760 

Meloidogyne 3 338.0 ±
318.5 

104.0 ±
45.7 

4.3 ± 4.3 0.0 ± 0.0 86.7 ±
44.0 

472.3 ±
165.3 

8.7 ± 4.3 17.3 ± 11.5 3.523 0.018* 

Pratylenchus 3 30.3 ± 18.9 17.3 ± 11.5 8.7 ± 8.7 0.0 ± 0.0 0.0 ± 0.0 34.7 ± 8.7 17.3 ±
17.3 

138.7 ±
138.7 

1.141 0.387 

Rotylenchulus 3 86.7 ± 61.1 21.7 ± 15.6 0.0 ± 0.0 17.3 ±
111.5 

130.0 ±
66.7 

34.7 ±
21.7 

4.3 ± 4.3 0.0 ± 0.0 5.755 0.002** 

Scutellonema 3 164.7 ±
90.5 

43.3 ± 43.3 104.0 ±
64.1 

17.3 ± 17.3 34.7 ±
18.9 

17.3 ± 8.7 82.3 ±
75.9 

13.0 ± 7.5 0.316 0.936 

Trichodorus 4 0.0 ± 0.0 0.0 ± 0.0 4.3 ± 4.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 39.0 ± 27.1 2.362 0.073 
Tylenchorhynchus 3 0.0 ± 0.0 0.0 ± 0.0 8.7 ± 4.3 0.0 ± 0.0 0.0 ± 0.0 8.7 ± 8.7 0.0 ± 0.0 0.0 ± 0.0 2.214 0.089 
Tylenchulus 3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 4.3 ± 4.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.000 0.466 
Tylenchus 2 99.7 ± 8.7 34.7 ± 8.7 69.3 ±

26.4 
26.0 ± 7.5 30.3 ±

15.6 
34.7 ±
21.7 

43.3 ±
24.1 

30.3 ± 18.9 1.227 0.344 

Xiphinema 5 4.3 ± 4.3 13.0 ± 7.5 8.7 ± 8.7 8.7 ± 4.3 8.7 ± 4.3 4.3 ± 4.3 17.3 ±
11.5 

21.7 ± 15.6 0.327 0.931 

Bacterivores 
Acrobeles 2 82.3 ± 18.9 134.3 ±

65.6 
26.0 ±
19.9 

99.7 ± 68.1 65.0 ±
19.9 

130.0 ±
91.3 

17.3 ± 4.3 30.3 ± 24.1 1.808 0.155 

Acrobeloides 2 0.0 ± 0.0 34.7 ± 17.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 4.000 0.010* 
Alaimus 4 26.0 ± 7.5 30.3 ± 17.3 13.0 ±

13.0 
13.0 ± 7.5 4.3 ± 4.3 39.0 ±

26.0 
17.3 ±
17.3 

4.3 ± 4.3 1.440 0.257 

Cephalobus 2 238.3 ±
119.7 

628.3 ±
462.3 

121.3 ±
56.8 

160.3 ±
95.6 

177.7 ±
11.5 

372.7 ±
86.7 

47.7 ±
21.7 

134.3 ±
85.4 

1.489 0.240 

Cervidellus 2 34.7 ± 22.9 43.3 ± 17.3 0.0 ± 0.0 4.3 ± 4.3 8.7 ± 8.7 21.7 ± 8.7 8.7 ± 8.7 0.0 ± 0.0 3.102 0.029* 
Chiloplacus 2 0.0 ± 0.0 0.0 ± 0.0 4.3 ± 4.3 30.3 ± 30.3 39.0 ±

13.0 
52.0 ±
27.1 

0.0 ± 0.0 17.3 ± 17.3 1.760 0.165 

Drilocephalobus 2 4.3 ± 4.3 4.3 ± 4.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.857 0.559 
Eucephalobus 2 30.3 ± 11.5 39.0 ± 7.5 4.3 ± 4.3 13.0 ± 7.5 13.0 ±

13.0 
26.0 ±
13.0 

4.3 ± 4.3 0.0 ± 0.0 1.909 0.135 

Geomonhystera 2 4.3 ± 4.3 34.7 ± 11.5 43.3 ±
18.9 

65.0 ± 37.5 60.7 ±
60.7 

30.3 ±
11.5 

8.7 ± 8.7 52.0 ± 27.1 1.063 0.429 

Heterocephalobus 2 117.0 ±
41.8 

60.7 ± 24.1 52.0 ±
7.5 

60.7 ± 42.7 52.0 ±
13.0 

130.0 ±
22.5 

69.3 ± 4.3 86.7 ± 45.9 0.602 0.746 

Mesorhabditis 1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 13.0 ±
13.0 

0.0 ± 0.0 0.0 ± 0.0 1.000 0.466 

Panagrolaimus 1 95.3 ± 26.4 17.3 ± 4.3 8.7 ± 8.7 43.3 ± 18.9 39.0 ±
15.0 

0.0 ± 0.0 0.0 ± 0.0 8.7 ± 8.7 11.531 <0.001*** 

Plectus 2 13.0 ± 7.5 60.7 ± 24.1 26.0 ±
15.0 

43.3 ± 21.7 30.3 ±
11.5 

34.7 ± 4.3 86.7 ±
34.7 

65.0 ± 52.5 0.796 0.602 

Prismatolaimus 3 34.7 ± 11.5 60.7 ± 18.9 56.3 ±
11.5 

86.7 ± 11.5 8.7 ± 8.7 47.7 ±
17.3 

17.3 ±
17.3 

65.0 ± 32.7 3.861 0.012* 

Protorhabditis 1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 4.3 ± 4.3 0.0 ± 0.0 1.000 0.466 
Rhabditis 1 34.7 ± 18.9 30.3 ± 18.9 8.7 ± 8.7 108.3 ±

53.2 
34.7 ±
34.7 

8.7 ± 8.7 8.7 ± 8.7 26.0 ± 26.0 0.968 0.486 

Wilsonema 2 13.0 ± 0.0 26.0 ± 7.5 4.3 ± 4.3 4.3 ± 4.3 34.7 ±
11.5 

8.7 ± 8.7 0.0 ± 0.0 8.7 ± 8.7 3.534 0.017* 

Fungivores 
Aphelenchoides 2 30.3 ± 17.3 30.3 ± 18.9 34.7 ±

28.4 
73.7 ± 34.7 13.0 ±

13.0 
43.3 ±
15.6 

8.7 ± 4.3 13.0 ± 7.5 1.041 0.442 

Aphelenchus 2 78.0 ± 19.9 78.0 ± 37.5 30.3 ±
11.5 

82.3 ± 17.3 151.7 ±
52.7 

312.0 ±
208.1 

34.7 ± 8.7 56.3 ± 50.0 2.061 0.110 

Filenchus 2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 4.3 ± 4.3 8.7 ± 8.7 0.0 ± 0.0 0.857 0.559 
Omnivores 
Aporcelaimellus 5 4.3 ± 4.3 0.0 ± 0.0 4.3 ± 4.3 0.0 ± 0.0 0.0 ± 0.0 4.3 ± 4.3 0.0 ± 0.0 4.3 ± 4.3 0.571 0.769 
Dorylaimellus 5 17.3 ± 11.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 4.3 ± 4.3 8.7 ± 8.7 0.0 ± 0.0 0.0 ± 0.0 1.691 0.182 
Eudorylaimus 4 0.0 ± 0.0 60.7 ± 4.3 34.7 ±

11.5 
65.0 ± 7.5 60.7 ±

33.8 
73.7 ±
55.3 

43.3 ± 4.3 17.3 ± 11.5 2.367 0.073 

Labronema 4 26.0 ± 13.0 39.0 ± 19.9 21.7 ±
11.5 

30.3 ± 8.7 34.7 ± 4.3 43.3 ±
15.6 

13.0 ± 7.5 43.3 ± 11.5 1.138 0.389 

Mesodorylaimus 4 4.3 ± 4.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 4.3 ± 4.3 0.0 ± 0.0 8.7 ± 4.3 17.3 ± 11.5 1.654 0.191 
Prodorylaimus 4 0.0 ± 0.0 0.0 ± 0.0 52.0 ±

19.9 
0.0 ± 0.0 21.7 ±

21.7 
8.7 ± 8.7 34.7 ±

22.9 
30.3 ± 24.1 2.550 0.057 

(continued on next page) 
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herbivores (13 genera), omnivores (7 genera), predators (6 genera) and 
fungivores (3 genera). There was a significant difference in the abun
dance of Longidorus (P = 0.020), Meloidogyne (P = 0.018), Rotylenchulus 
(P = 0.002), Acrobeloides (P = 0.010), Cervidellus (P = 0.029), Pana
grolaimus (P < 0.001), Prismatolaimus (P = 0.012) and Wilsonema (P =
0.017). Among the herbivores, Meloidogyne, Rotylenchulus and Long
idorus were predominant in Karigiri, Kanyueri and Itururi, respectively. 
For bacterivores, both Cervidellus and Acrobeloides were most prevalent 
in Gwakaithi while Panagrolaimus, Prismatolaimus and Wilsonema were 
most abundant in Gatunguru B, Kambungu and Kanyueri regions, 
respectively. No significant differences were recorded for genera 
belonging to fungivores, omnivores and predators. Following c-p clas
sification, most herbivores were assigned to cp-3 except Longidorus, 
Malenchus, Trichodorus, Tylenchus and Xiphinema. Bacterivores were 
mainly categorized in the cp-2 group apart from Alaimus, Mesorhabditis, 
Panagrolaimus, Protorhabditis, Rhabditis and Prismatolaimus, whereas 
fungivores belonged to the cp-2 group. Both omnivores and predators 
belonged to cp4-5 guilds except Tripyla as recorded in Table 2. 

Across the eight regions, there were no significant differences in 
Shannon diversity (ranging from 2.34 in Karigiri to 2.67 in Itururi), 
Simpson diversity (0.82; Gwakaithi – 0.91; Itururi), genus richness 
(18.33; Njarange – 23.00; Gwakaithi) and Pielou’s evenness (0.76; 
Karigiri – 0.90; Itururi). 

Soil physico-chemical properties across the eight regions are pre
sented in Table 3. The canonical correspondence analysis (CCA) was 
used to establish the relationship between soil variables and obtained 
nematode genera abundance. Some soil variables significantly corre
lated with abundance of certain nematode genera as shown in Fig. 1. The 

genera Hoplolaimus and Mesorhabditis correlated positively with sand 
and negatively with Ca, pH and clay. The abundance of Acrobeloides 
correlated positively with Mg, C, Mn and N, and negatively with Fe. 
Occurrence of Discolaimus, Tylenchorhynchus, Mononchus, Aporcelai
mellus and Tripyla was positively associated with Fe and negatively with 
Mn, C, N and Mg. The first (eigenvalue = 0.12) and second (eigenvalue 
= 0.08) axes accounted for 33.24% and 23.41% of the total variance, 
respectively. 

4. Discussion 

The PPN genera identified in this study belonged to the orders 
Tylenchomorpha, Dorylaimida and Triplonchida [51]. Plant parasitic 
nematodes cause annual yield losses of US $ 100–173 billion [14], more 
than that of invasive insects (about US $ 70 billion) [52]. Several 
economically important PPN are associated with pulse crops including 
pigeon pea. These include Meloidogyne spp., Heterodera spp., Para
tylenchus spp., Rotylenchulus spp., Tylenchorhynchus spp. and Heli
cotylenchus spp [9,53]. In this study, the 13 PPN genera recovered across 
the eight regions were observed in previous studies [54]. Sharma et al. 
[55] recorded 25 PPN associated with pigeon pea in Kenya, while 
Abuzar and Haseeb [56] reported 5 genera from pigeon pea fields in 
India. The variation in number of genera between these studies could 
probably be due to the fact that pigeon pea has been identified as a good 
host for several ecto- and endo-parasitic nematodes [11]. Sedentary 
endoparasite, Meloidogyne spp., is among the most economically 
important PPN with an extensive host range (>3000 plants species) [20, 
57] including pigeon pea [9]. In the present study, high abundance of 

Table 2 (continued ) 

Genus Cp - 
value 

Gatunguru B Gwakaithi Itururi Kambungu Kanyueri Karigiri Mbangua Njarange F - 
value 

P - value 

Mean ± SE Mean ± SE Mean ±
SE 

Mean ± SE Mean ± SE Mean ± SE Mean ±
SE 

Mean ± SE   

Pungentus 4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 4.3 ± 4.3 1.000 0.466 
Predators 
Discolaimus 5 0.0 ± 0.0 4.3 ± 4.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.000 0.466 
Mononchus 4 34.7 ± 34.7 0.0 ± 0.0 39.0 ±

13.0 
0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 4.3 ± 4.3 4.3 ± 4.3 2.283 0.081 

Mylonchulus 4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 21.7 ±
21.7 

0.0 ± 0.0 8.7 ± 8.7 0.0 ± 0.0 0.863 0.555 

Nygolaimus 5 34.7 ± 8.7 8.7 ± 4.3 69.3 ±
18.9 

52.0 ± 26.0 4.3 ± 4.3 69.3 ±
24.1 

21.7 ± 8.7 60.7 ± 26.4 2.450 0.065 

Prionchulus 4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 8.7 ± 8.7 0.0 ± 0.0 0.0 ± 0.0 73.7 ±
45.2 

4.3 ± 4.3 2.077 0.107 

Tripyla 3 0.0 ± 0.0 4.3 ± 4.3 30.3 ±
15.6 

4.3 ± 4.3 4.3 ± 4.3 0.0 ± 0.0 0.0 ± 0.0 13.0 ± 13.0 1.005 0.463 

Cp = colonizer-persister scale (Cp1-5). *P < 0.05, **P < 0.01, ***P < 0.001. 

Table 3 
Soil physico-chemical attributes in Gatunguru B, Gwakaithi, Itururi, Kambungu, Kanyueri, Karigiri, Mbangua and Njarange regions, Embu County, Kenya.  

Soil properties Gatunguru B Gwakaithi Itururi Kambungu Kanyueri Karigiri Mbangua Njarange 

Soil pH 5.75 6.01 6.40 7.08 6.58 5.49 6.91 7.08 
Total Nitrogen (%) 0.11 0.12 0.10 0.11 0.18 0.11 0.13 0.11 
Total Organic Carbon (%) 1.16 1.29 0.88 1.20 2.06 1.24 1.49 1.20 
Phosphorous ppm 33.00 40.67 60.00 53.00 46.00 29.33 50.67 53.00 
Potassium meq% 1.04 0.81 0.52 1.00 1.68 0.87 1.23 1.00 
Calcium meq% 2.20 1.93 2.60 5.00 5.60 1.67 5.20 5.00 
Magnesium meq% 2.41 2.99 2.44 2.56 4.11 2.26 3.08 2.56 
Manganese meq% 0.87 0.79 0.44 0.76 1.05 0.93 0.86 0.76 
Copper ppm 1.00 0.33 0.64 2.78 0.25 1.20 1.94 2.78 
Iron ppm 23.20 27.57 27.5 24.90 20.00 26.13 23.27 24.90 
Zinc ppm 5.17 4.95 6.73 3.85 20.10 5.25 9.27 3.85 
Sodium meq% 0.20 0.28 0.20 0.16 0.18 0.23 0.17 0.16 
Sand 60.00 57.33 48.00 42.00 48.00 62.67 44.00 42.00 
Clay 26.00 34.67 44.00 50.00 38.00 26.00 46.00 50.00 
Silt 14.00 8.00 8.00 8.00 14.00 11.33 10.00 8.00 

Note: meq = milliequivalent. ppm = parts-per million. 
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Meloidogyne corresponded with the results observed on pigeon pea in 
Malawi [58], India [58], and Brazil [53]. About 8–35% pigeon pea yield 
losses due to Meloidogyne spp. have been documented [11]. Addition
ally, a significant decline in plant growth characteristics such as yield, 
plant weight and height, chlorophyll content, number of pods, bulk 
density and root nodulation due to Meloidogyne spp. has been reported in 
pigeon pea [59]. Meloidogyne incognita along with either Macrophomina 
phaseolina or Fusarium oxysporum reduced plant growth parameters 
(plant height, shoot length, yield, number of pods, and fresh and dry 
weight), physio-biochemical attributes (carotenoids, chlorophyll, N, P 
and K contents), photosynthetic rate, transpiration rate and stomatal 
conductance in chickpea [60] and tomatoes [61]. 

Rotylenchulus is considered a significant pest of pigeon pea, resulting 
in yield losses ranging from 14% to 29% depending on the crop growth 
period, soil type, climatic factors and initial pathogenic level [11,22]. 
Rotylenchulus being the second most predominant genera in this study 
was consistent with previous reports [62]. This nematode has been 
found in association with pigeon pea in India [23], Belize [63], Fiji and 
Jamaica [64]. It has been reported to induce stunted growth, progressive 
dieback of main stem and twigs, yellowing of new leaves and premature 
death in pigeon pea [65]. Longidorus, also prevalent in the current work, 
has been shown to attack pulse crops especially chickpea, thereby acting 
as a vector for several important plant viruses [9]. Migratory endopar
asites (Scutellonema and Pratylenchus) occurred in high abundance (not 

statistically different) across the eight regions. The two nematodes have 
been recorded as important nematode pests in pigeon pea in Brazil, USA, 
Zimbabwe, Jamaica, India and Kenya [23,53,55,64]. In maize, Praty
lenchus spp. reduced plant height, chlorophyll content, shoot and root 
weight as well as destroying cortical parenchyma and epidermal tissues 
resulting in severe root necrosis [20,66]. 

Free living nematodes are crucial in the decomposition of organic 
materials and recycling of soil nutrients [67]. They also play an 
important role in plant growth [31,32]. For example, Prionchulus, Dis
colaimus and Tripyla have been found to improve plant growth through 
the release of nitrogen compounds that are a byproduct of feeding on soil 
microorganisms [27,68]. The current work provides data on FLN from 
monocrop pigeon pea in a semi-arid agroecosystem. Bacterivores (Pan
agrolaimus, Prismatolaimus, Cervidellus, Acrobeloides and Wilsonema) 
were the most abundant as previously reported [34,69]. In another 
study, bacterivores dominated by family Rhabditidae were documented 
in maize cropping systems in Nigeria [70]. Bacterivores assigned to the 
cp-2 group were the most prevalent in this study which is in agreement 
with agro-ecosystems subjected to varying human activities [71]. 
Bongers and Bongers [72] stated that cp-2 nematodes (also regarded as 
general opportunists) can survive in stressed environments such as 
resource poor or enriched ecosystems. Diversity indices did not signifi
cantly vary across the eight regions probably due to the similar crop type 
[73]. However, crop type significantly influenced diversity indices in a 
nematode community in perennial agro-ecosystems compared to other 
factors such as rainfall [74]. 

Nematode community assemblages identified in this study varied in 
abundance, distribution and composition among the eight sampled re
gions, as previously reported [75]. The differences observed between 
pigeon pea fields herein could be partially explained by soil variables 
[76,77]. Kandji et al. [40] recorded a significant role of soil character
istics namely clay, organic matter and soil bulk density on nematode 
diversity, abundance and distribution. In the current study, the occur
rence of Acrobeloides was positively associated with Mg, Mn, C and N, 
and negatively with Fe. Yavuzaslanoglu et al. [78] found that Acrobe
loides was positively correlated with Mn and negatively with Mg. Else
where, Liang et al. [79] reported that the abundance of Acrobeloides was 
positively associated with C and N. Soil pH is regarded as a crucial factor 
in shaping the structure and abundance of nematode assemblages [80, 
81]. In this study, the occurrence of Hoplolaimus and Mesorhabditis was 
negatively correlated with pH, clay and Ca, as well as positively asso
ciated with sand. Similarly, Matute [82] noted a negative relationship 
between soil pH with bacterivores (Mesorhabditis, Rhabditis and Pana
grolaimus) and herbivores (Hoplolaimus, Meloidogyne and Heli
cotylenchus). Mashela et al. [83], however, reported that sand negatively 
affected the densities of Hoplolaimus. In another study, Hoplolaimus 
population was positively related to clay [84]. Tylenchorhynchus abun
dance in the present study was negatively affected by Mg, C and N as 
recently recorded [85]. The observed variation in the relationship be
tween specific nematode genera and certain soil attributes in this study 
compared to other studies may be due to land-use effects among other 
factors [79]. 

5. Conclusion 

In this study, forty-six nematode genera were identified in monocrop 
pigeon pea, dominated by bacterivores. The analysis of the relationship 
between nematode genera abundance and soil physico-chemical prop
erties revealed that soil pH, clay and Ca negatively affected the abun
dance of genera Hoplolaimus and Mesorhabditis. Conversely, Mg, Mn and 
N positively influenced the occurrence of Acrobeloides whereas Fe 
negatively affected its abundance. This study provides baseline data 
which can be useful in designing sound and effective nematode man
agement programs. However, further research on soil health manage
ment practices that enhance higher order nematodes with the ability to 
suppress PPN is needed in order to reduce PPN spread and improve 

Fig. 1. Canonical correspondence analysis (CCA) of 46 nematode genera in 
Gatunguru B, Gwakaithi, Itururi, Kambungu, Kanyueri, Karigiri, Mbangua and 
Njarange regions using soil physico-chemical attributes (Carbon (C), Nitrogen 
(N), Calcium (Ca), Copper (Cu), Zinc (Zn), Sodium (Na), Magnesium (Mg), 
Phosphorus (P), Iron (Fe), clay, Silt, Sand, Potassium (K), Manganese (Mn) and 
soil Ph (pH)) marked by blue arrows. The first and second axes explain a cu
mulative variance of 56.65%. Nematode genera abbreviations include: Acr, 
Acrobeles; Acrd, Acrobeloides; Ala, Alaimus; Apheld, Aphelenchoides; Aphel, 
Aphelenchus; Aporc, Aporcelaimellus; Ceph, Cephalobus; Cerv, Cervidellus; Chil, 
Chiloplacus; Disc, Discolaimus; Dril, Drilocephalobus; Doryl, Dorylaimellus; Euc, 
Eucephalobus; Eud, Eudorylaimus; Fil, Filenchus; Geo, Geomonhystera; Helic, 
Helicotylenchus; Het, Heterocephalobus; Hopl, Hoplolaimus; Lab, Labronema; Lon, 
Longidorus; Mal, Malenchus; Mel, Meloidogyne; Mesod, Mesodorylaimus; Mesor, 
Mesorhabditis; Myl, Mylonchulus; Mon, Mononchus; Nygo, Nygolaimus; Pan, 
Panagrolaimus; Ple, Plectus; Prat, Pratylenchus; Prio, Prionchulus; Pris, Prismato
laimus; Prod, Prodorylaimus; Prot, Protorhabditis; Pun, Pungentus; Rhab, Rhab
ditis; Rotyl, Rotylenchulus; Scut, Scutellonema; Trich, Trichodorus; Trip, Tripyla; 
Tyley, Tylenchorhynchus; Tylens, Tylenchus; Tyle, Tylenchulus; Wils, Wilsonema; 
and Xip, Xiphinema. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.) 
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pigeon pea yields. 
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