Fine particle matters induce DNA damage and G2/M cell cycle arrest in human bronchial epithelial BEAS-2B cells.

Wu J^{1,2,3}, Shi Y^{1,2}, Asweto CO^{1,2}, Feng L^{1,2}, Yang X^{1,2}, Zhang Y^{1,2}, Hu H^{1,2}, Duan J^{4,5}, Sun Z^{6,7}.

Author information

- 1. Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China.
- 2. Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China.
- 3. Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China.
- 4. Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China. jcduan@ccmu.edu.cn.
- 5. Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China. jcduan@ccmu.edu.cn.
- 6. Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China. zwsun@ccmu.edu.cn.
- 7. Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China. zwsun@ccmu.edu.cn.

Abstract

There is compelling evidence that exposure to particulate matter (PM) is linked to lung tumorigenesis. However, there is not enough experimental evidence to support the specific mechanisms of PM_{2.5}-induced DNA damage and cell cycle arrest in lung tumorigenesis. In this study, we investigated the toxic effects and molecular mechanisms of PM_{2.5} on bronchial epithelial (BEAS-2B) cells. PM_{2.5} exposure reduced cell viability and enhanced LDH activity. The cell growth curves of BEAS-2B cells decreased gradually with the increase in PM_{2.5}dosage. A significant increase in MDA content and a decrease in GSH-Px activity were observed. The generation of ROS was enhanced obviously, while apoptosis increased in BEAS-2B cells exposed to PM_{2.5} for 24 h. DNA damage was found to be more severe in the exposed groups compared with the control. For in-depth study, we have demonstrated that PM_{2.5} stimulated the activation of HER2/ErbB2 while significantly upregulating the expression of Ras/GADPH, p-BRAF/BRAF, p-MEK/MEK, p-ERK/ERK, and c-Myc/GADPH in a dose-dependent manner. In summary, we suggested that exposure to PM_{2.5} sustained the activation of HER2/ErbB2, which in turn promoted the activation of the Ras/Raf/MAPK pathway and the expression of the downstream target c-Myc. The overexpression of c-Myc may lead to G2/M arrest and aggravate the DNA damage and apoptosis in BEAS-2B after exposure to PM_{2.5}.

KEYWORDS:

BEAS-2B cells; Cell cycle arrest; Cytotoxicity; DNA damage; PM2.5; Ras/Raf/MAPK pathway